

VISY PULP & PAPER TUMUT NSW

Farm and Environmental Monitoring Report 2024/2025

Report No: 10471 31 July 2025

McMahon Environmental Consultants

6 Jones St (PO Box 6118)

Wagga Wagga NSW 2650

t (02) 6931 0510

www.dmmcmahon.com.au

Contents

1	Intro	duction	6
2	Mon	itoring program 2024/2025	6
	2.1	Monitoring suites	9
3	Seas	onal conditions 2024/25	. 10
4	Grou	ındwater assessment	. 13
	4.1	Groundwater bores introduction	13
	4.2	Background bores monitoring	15
	4.2.	I Chemical Analysis	15
	4.3	Irrigation bores monitoring	15
	4.3.	I Chemical Analysis	16
	4.4	Winter storage bores monitoring	16
	4.4.	I Chemical Analysis	16
	4.5	Groundwater depth monitoring	. 17
	4.6	Groundwater conclusions	19
5	Surfa	ace water assessment	. 20
	5.1	Surface water monitoring sites	20
	5.1.	Surface Water Site 1 (SW1)	21
	5.1.2	2 Surface Water Site 2 (SW2)	21
	5.1.3	3 Surface Water Site 3 (SW3)	. 22
	5.1.4	4 Surface Water Site 4 (SW4)	23
	5.1.	5 Surface Water Site 5 (SW5)	24
	5.2	Chemical analysis	25
6	Was	tewater assessment	. 26
	6.1	Wastewater monitoring site	26
	6.2	Chemical analysis	27
7	Irrig	ation assessment	. 28
	7.1	Irrigation scheduling	30
8	Irrio:	ated cron assessment	32

	8.1	Cr	ops grown and yields	32
	8.2	Irri	gation cropping program	32
9	Soil	und	er irrigation assessment	34
	9.1	So	ils introduction	34
	9.2	So	il monitoring sites	34
	9.2.	1 '	West of the winter storage	34
	9.2.2	2	East and south of the winter storage	34
	9.2.3	3	South-east corner	34
	9.3	Me	thodology	35
	9.4	Ele	ectromagnetic surveying	35
	9.5	An	alysis	36
	9.5.1	1	Monitoring October 2024	37
	9.5.2	2	Monitoring April 2025	38
1() Nutr	ient	t balance and forward management plan	39
	10.1	Nu	trient balance management	39
	10.2	Nu	trient supply	40
	10.2	.1	Fertiliser	40
	10.2	2	Waste water	40
	10.2	.3	Mineralisation	40
	10.2	.4	Fixation	41
	10.3	Nu	trient removal	41
	10.3	.1	Seasonal influence	42
	10.4	De	pth of nutrient removal	42
1:	L Who	le f	arm management	43
	11.1	Pa	sture improvement	43
	11.2	Tre	ee management	44
	11.3	We	eed management	44
	11.4	Fe	ral animal management	45
12	2 Ву-р	rod	ucts and the soil amendment trial	47
	12.1	Su	mmary of by-products at Visy	47
	12.1	.1	Dregs and Grits	47

	12.1.	.2 Lime mud	48
13	Sludg	ge assessment	48
1;	3.1	Sludge monitoring site	48
1:	3.2	Chemical analysis	49
14	Reco	ommendations summary5	50
15	Refe	rences5	52
16	Gene	eral glossary5	54
17	Chen	mical glossary5	55
18	Attac	chments5	57

List of Tables

Park 2024/25Park 2024/25	
Table 2: Suite details – Testing suites for sampling schedule	. 10
Table 3: Historical irrigation amounts	. 28
Table 4: Amount of water irrigated to land 2024/25	. 29
Table 5: Irrigation scheduling and ETo data, February 2025 CP3	. 31
Table 6: Irrigated summer/autumn cropping for season 2024/25	. 32
Table 7: Irrigated winter/spring cropping for season 2025	. 32
Table 8: Irrigated summer/autumn cropping for season 2025/26	. 33
Table 9: Irrigated winter cropping for season 2026	. 33
Table 10: Irrigated summer/autumn cropping for season 2026/27	. 33
Table 11: Nutrient removal ranges for crops grown at Gadara Park	. 41

List of Figures

Figure 1: Monthly raintall 2024 to 2025 compared to long term average
Figure 2: Monthly maximum temperatures 2024 to 2025 compared to long term average
Figure 3: Monthly minimum temperatures 2024 to 2025 compared to long term average
Figure 4: Monthly evaporation 2024 to 2025 compared to long term average 12
Figure 5: Bore locations around Gadara Park and the Visy mill
Figure 6: Depth of background (non-irrigation) bores at Gadara Park in metres below top of casing (BTOC)
Figure 7: Depth of irrigation bores at Gadara Park in meters below top of casing (BTOC)
Figure 8: Depth of winter storage bores at Gadara Park in meters below top of casing (BTOC)
Figure 9: Surface water monitoring points at Gadara Park
Figure 10: Surface water monitoring point number 1
Figure 11: Surface water monitoring point number 2
Figure 12: Surface water monitoring point number 3
Figure 13: Surface water monitoring point number 4
Figure 14: Surface water monitoring point number 5
Figure 15: Centre pivots at Gadara Park showing soil monitoring sites 35
Figure 16: Location of soil monitoring sites in relation to EM-38 survey
Figure 17: Tree planting
Figure 18: Figure of the origins of the lime mud and dregs and grits by-products 48
Figure 19: Sludge being applied to land (Colson 2002)

1 Introduction

DM McMahon Pty Ltd have prepared this report on behalf of Visy Pulp & Paper Pty Ltd (Visy). The report presents a summary and analysis of environmental monitoring conducted at Gadara Park. Gadara Park is an approximately 2,124-hectare farm that surrounds the Visy mill. The Visy mill footprint on the farm is approximately 60 hectares.

The environmental monitoring program is conducted as specified in the Visy mill's Site Development Application, and in line with the Visy mill's NSW Environment Protection Authority (EPA) Environmental Protection Licence.

Gadara Park is an established cattle and sheep enterprise focused on prime beef and lamb production. Visy have a grazing rights agreement with JR Farming and Management Solutions, who presently run approximately 1,000 head of cattle and approximately 5,000 ewes and lambs. Gadara Park utilises the treated wastewater from the mill to irrigate 110 hectares using five centre pivot irrigators and a soft hose travelling irrigator. The irrigation areas produce hay, silage and fodder crops that are fed to the cattle and lambs, as part of Gadara Park's commercial prime beef and lamb production enterprise. Mill by-products have also been used as soil ameliorants in previous years for improved agricultural production as part of a Soil Amendment Trial.

The monitoring assesses the potential impacts of plant, farm, and irrigation operations on the environment. This report was commissioned by Visy as part of their annual Compliance and Monitoring report.

Limits for water quality have been drawn from the Visy EPA Licence No. 10232. Where no limit has been given in the licence, the Australian and New Zealand Guidelines (ANZG) for Fresh and Marine Water Quality (2018) or other relevant guidelines have been used.

Various sources have been used for establishing desirable ranges for soil analysis. The sources are mainly from published CSIRO and NSW Agriculture literature. Due to the wide range of test parameters, a single source could not be found that covered all analyses.

This report is a collation and interpretation of all monitoring activities and provides an annual summary of mill and farm activities.

2 Monitoring Program 2024/2025

Since November 2003, DM McMahon Pty Ltd has conducted monitoring at Gadara Park as specified in the Visy EPA Licence No. 10232. This includes, but is not limited to, groundwater, surface waters, irrigation water, sludge, and soils.

The monitoring program includes:

- Groundwater
 - Quarterly groundwater level monitoring

- o Quarterly groundwater sampling and analysis
- Surface water
 - o Monthly surface water sampling and analysis (during irrigation season)
- Wastewater and sludge
 - Wastewater sampling and analysis six times per year
 - Monthly sludge sampling and monitoring
- Soil under irrigation
 - o Biannual soil sampling and analysis
 - Nutrient balance and forward management plan
- By-product application
 - o Monthly sampling and analysis
 - o Ongoing beneficial re-use assessment
- Farm assessment
 - o Farm agronomy
 - o Crop planning for irrigation
 - o Pasture improvement
 - o Soil analysis
 - Nutrient budgeting

The following Table 1 shows the monitoring schedule of 2024/25 including sampling activity and frequency. Monitoring of sludge from the wastewater treatment plant, wastewater from the decant line, and mill by-products is undertaken monthly, while activities such as surface water testing are undertaken during the summer irrigation season. Groundwater sampling and analysis is undertaken quarterly. Soil sampling is undertaken biannually to coincide with the start of the winter and summer cropping programs. Soil sampling is used as a farm management tool as well as for environmental monitoring.

Table 1: Monitoring program for all waters, soils, by-products and pasture at Gadara Park 2024/25

Date	Activity
July 2024	
1.7.2024	By-products
1.7.2024	Storm waters
1.7.2024	WWTP-sludge from SBT
1.7.2024	Decant Point 10
1.7.2024	Groundwater quality

AUGUST 2024	
2.8.2024	By-products
2.8.2024	Storm waters
2.8.2024	WWTP-Sludge from SBT
2.8.2024	Decant Point 10
SEPTEMBER 2024	
3.9.2024	By-products
3.9.2024	Storm waters
3.9.2024	WWTP-sludge from SBT
3.9.2024	Decant Point 10
OCTOBER 2024	
8.10.2024	By-products
8.10.2024	Storm waters
8.10.2024	WWTP sludge from SBT
8.10.2024	Decant Point 10
2.10.2024	Surface waters
2.10.2024	Groundwater quality
3.10.2024	Soil monitoring sites
NOVEMBER 2024	
11.11.2024	By-products
11.11.2024	Storm waters
11.11.2024	WWTP-sludge from SBT
11.11.2024	Decant Point 10
11.11.2024	Surface waters
DECEMBER 2024	
2.12.2024	By-products
2.12.2024	Storm waters
2.12.2024	WWTP-sludge from SBT
2.12.2024	Decant Point 10
2.12.2024	Surface waters
JANUARY 2025	
8.1.2025	By-products
8.1.2025	Storm waters
8.1.2025	WWTP-sludge from SBT
8.1.2025	Decant Point 10
8.1.2025	Surface waters
8.1.2025	Groundwater Quality
	I .

FEBRUARY 2025			
13.2.2025	By-products		
13.2.2025	Storm waters		
13.2.2025	WWTP sludge from SBT		
13.2.2025	Decant Point 10		
13.2.2025	Surface waters		
MARCH 2025			
7.3.2025	By-products		
7.3.2025	Storm waters		
7.3.2025	WWTP sludge from SBT		
7.3.2025	Decant Point 10		
7.3.2025	Surface waters		
APRIL 2025			
3.4.2025	By-products		
3.4.2025	Storm waters		
3.4.2025	WWTP sludge from SBT		
3.4.2025	Decant Point 10		
3.4.2025	Surface waters		
2.4.2025	Groundwater quality		
3.4.2025	Soil monitoring sites		
MAY 2025			
14.5.2025	By products		
14.5.2025	Storm waters		
14.5.2025	WWTP sludge from SBT		
14.5.2025	Decant Point 10		
14.5.2025	Surface waters		
JUNE 2025			
2.6.2025	By products		
2.6.2025	Storm waters		
2.6.2025	WWTP sludge from SBT		
2.6.2025	Decant Point 10		

2.1 Monitoring suites

Table 2 shows the parameters that are tested for each monitoring activity. The parameters tested in the monitoring suites are dictated by the Environment Protection Licence No. 10232, although some additional monitoring is undertaken to aid farm management. Soil monitoring, for example, has additional nutrient analysis conducted to assist in nutrient budgeting for the cropping program. From the additional testing,

nutrient budgets are calculated and reviewed every season to ensure maximum sustainable crop production.

A glossary with all abbreviations of chemical parameters can be seen in **Sections 16** and **17**.

Table 2: Suite details – Testing suites for sampling schedule

Monitoring activity	Frequency	Parameters
By-product monitoring	Monthly	As, Cd, Cr, Cu, Hg, Ni, Pb, Zn, Na, Bo, EC, Mo, pH, Se & moisture
Soil monitoring environmental	Annually	AS, Al, P (Available) EC, Ex Al, Ex Ca Ex Mg, Ex K, Ex Na, Nitrate, N (Total), OC, pH, PBI
Soil monitoring agriculture	Biannually	P(Bray), PBI, Ammonia, Ca, Mg, Na, K, Al, S, Cl, Boron
Hay / silage	As required	ME, Moisture, DM, CP, NDF, DMD, As, Cd, Cr, Cu, Hg, Ni, Pb, Zn
Groundwater monitoring	Quarterly	Depth, pH
Groundwater monitoring	Biannually	Depth, pH, EC, Nitrate
Decant Point 10	Six times per year	BOD, N, O & G, pH, P (Total) SAR, TDS, TSS, Zn
Sludge monitoring	Monthly during application	Mn, TSS, BOD, SAR, N (Total), P (Total), TDS, pH, EC, Cl, O & G
Surface water monitoring	Monthly during application	pH, TDS. BOD, TSS, Zn, P (Total), N (Total), Mn, EC, FC, O & G

3 SEASONAL CONDITIONS 2024/25

Rainfall, temperature, and precipitation data was obtained through SILO (QLD Govt., 2025) with the data being interpolated from a point on the subject site. The SILO database has information on temperature, rainfall, and evaporation date from 1889 to the current day. The seasonal conditions compared to the long-term averages from 1889 can be seen in **Figures 1** to **4**.

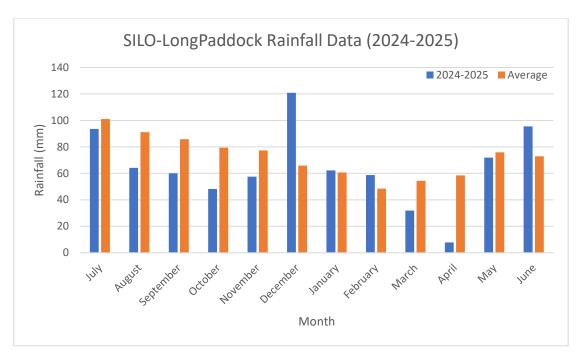


Figure 1: Monthly rainfall 2024 to 2025 compared to long term average.

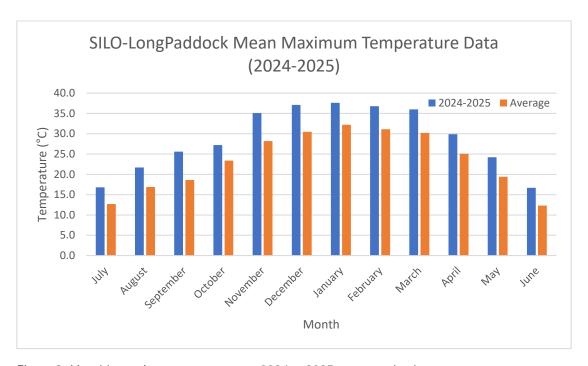


Figure 2: Monthly maximum temperatures 2024 to 2025 compared to long term average.

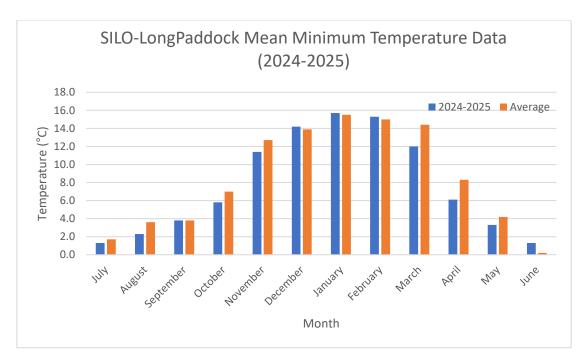


Figure 3: Monthly minimum temperatures 2024 to 2025 compared to long term average.

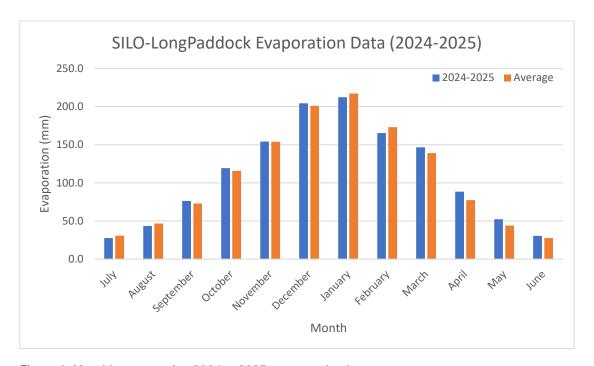


Figure 4: Monthly evaporation 2024 to 2025 compared to long term average.

Total rainfall for 2024/25 was 772.4mm which is lower than the annual average of 871.4mm. Monthly rainfall was above the average in December, January, February, and June. Maximum and minimum temperatures in 2024/25 were similar to the long-term average. Evaporation in 2024/25 was generally similar to the average.

4 GROUNDWATER ASSESSMENT

4.1 GROUNDWATER BORES INTRODUCTION

At Gadara Park, 18 groundwater bores are monitored as specified in the EPA Licence conditions. Depth to piezometric surface and groundwater quality are monitored to ascertain if the mill and irrigation operations have any impact on local groundwater conditions.

Chemical analysis is carried out on a quarterly basis with the following parameters tested:

- Depth and pH (quarterly).
- Electrical conductivity (EC) and nitrate (every 6 months).

Depth to piezometric surface is assessed manually each quarter, with a water level indicator and tape measure. Automated depth monitoring has been installed in two bores as an ongoing improvement to the monitoring program.

The monitoring bores are classified in three main groups used for comparing quality:

- Bores BH1, BH2, BH3, BH4, BH7S, BH7D, BH11S and BH11D are background monitoring bores, and are located upstream of irrigation and mill activities.
- Bores BH8S, BH8D, BH9, BH10, BH15S and BH15D are located downstream and in areas of irrigation and potentially impacting activities.
- Bores BH13, BH14, BH16, and BH17 are located immediately below the winter storage to assess any impacts of the dam on shallow groundwater.

Thirty new groundwater monitoring bores were installed in 2005/06 to gain a better understanding of the groundwater characteristics upstream of, and within the irrigation area. The piezometric surface depth of the new bores in the irrigation and winter storage area is monitored quarterly in conjunction with the existing 18 bores but most of these bores were destroyed in 2023/2024 when the pivots and paddocks were cultivated.

- Bores BH27S, BH27D, BH28S and BH28D are located on either side of the winter storage to assess any impacts of the dam on shallow groundwater.
- Bores BH21S, BH21D, BH22S, BH22D, BH23S, BH23D, BH24S, BH24D, BH25S, BH25D, BH26S and BH26D are located within the irrigation area.
- Bores BH29S, BH29D, BH30S, BH30D, BH31S, BH31D, BH32S, BH32D, BH33S, BH33D, BH34S, BH34D, BH35S and BH35D are located upstream of the irrigation and mill activities and are classified as background bores.

Figure 5 shows the location of all the monitoring bores. At some sites, shallow (S) and deep (D) bores are located alongside each other. These have been represented as a single monitoring bore site in Figure 5.

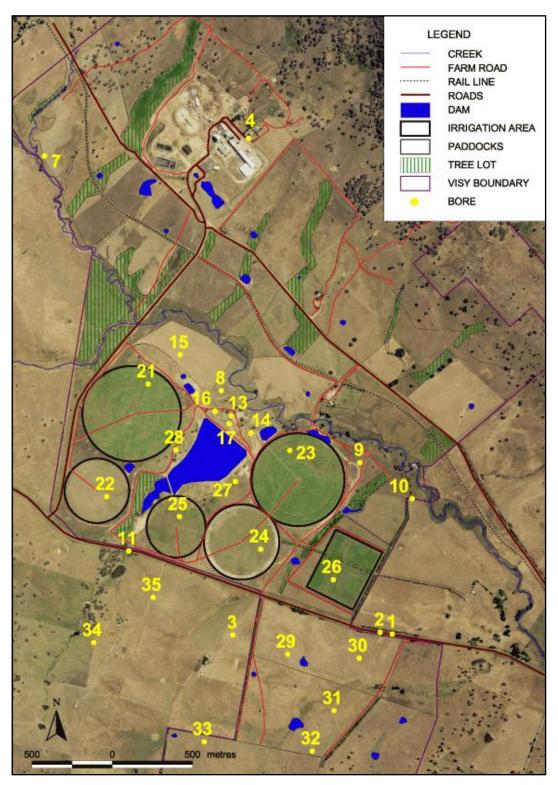


Figure 5: Bore locations around Gadara Park and the Visy mill

4.2 BACKGROUND BORES MONITORING

Bores: BH1, BH2, BH3, BH4, BH7S, BH7D, BH11S and BH11D

Bores BH1, BH2, BH3 and BH4 are large diameter bores (75mm to 100mm casing), ranging in depth from 10m to 30m. Bores BH1, BH2 and BH3 are located on the southern boundary of the farm and are higher in elevation compared to the irrigation area. Bore BH4 was located north of the mill site and is higher in elevation than all irrigation and mill activities. It was the deepest bore (30m) and had the highest elevation. In December 2007, Bore BH4 was destroyed during the mill expansion construction process and has not been replaced.

Bores BH7S and BH7D are located on the western margin of the Gadara Park property before the junction of Sandy Creek and Deep Creek. These bores are upstream of all mill and irrigation activities. Bores BH7S and BH7D have respective depths of approximately 7m and 14m.

Bores BH11S and BH11D are located on the Snowy Mountains Highway, at the southern boundary of Gadara Park and upstream of all irrigation and farm activities. These bores have respective depths of approximately 6m and 13m.

4.2.1 Chemical Analysis

All results are provided in Attachment A.

рН

All background bores are slightly acidic to slightly alkaline (5.5 – 6.9) with most sitting within the neutral range. Overall, groundwater pH has been variable since monitoring commenced. Since 2013 however, pH is becoming more neutral and stable with a gradual increase noted over time in BH1, BH2 and BH3. When compared to the 2023/24 monitoring period, pH has remained stable.

Electrical Conductivity

EC ranged from 135μ S/cm (BH2, July 2024) to 821μ S/cm (BH11S, July 2025). EC values have remained relatively stable with a slightly decreasing trend noted since 2001.

Nitrate

Background bores generally exhibited low and stable levels of nitrate. Levels encountered in these bores are classed as low strength for agricultural use, compared against the Australian & New Zealand Guidelines for Fresh & Marine Water Quality (2018) critical values. Nitrate levels were highest at BH3 (5.7ppm in January 2025) which is typical for this monitoring bore.

4.3 IRRIGATION BORES MONITORING

Bores: BH8S, BH8D, BH9, BH10, BH15S and BH15D

BH8S and BH8D are located to the north-east (down-slope) of the western irrigation area slightly above the creek flats. They are 6m and 10m deep respectively.

BH9 is located to the north-east (down-slope) of the eastern irrigation area and Centre Pivot 3. BH9 is 16m deep.

BH10 is located on the eastern edge of the farm, and of all the bores is the furthest downstream of all irrigation activities. BH10 is 14m deep.

BH15S and BH15D are located to the north of Centre Pivot 1 on the creek flats. They are 6m and 17.5m deep respectively.

4.3.1 Chemical Analysis

All results are provided in Attachment A.

На

All irrigation bores were typically slightly acidic to neutral across all bores (6.6 - 7.5). The irrigation bores have remained relatively stable since monitoring began.

Electrical Conductivity

EC ranged from 300μ S/cm (BH15D, January 2025) to 641μ S/cm (BH10, July 2024). EC in the irrigation bores has remained relatively stable since monitoring began in 2001 with some seasonal variation.

Nitrate

Nitrate levels in the irrigation bores are variable ranging from 0.67mg/L (BH8S, January 2024) to 12mg/L (BH10, January and July 2024). Nitrate levels at BH8S and BH8D have been declining gradually since 2004 but have remained relatively stable for the last three monitoring periods.

4.4 WINTER STORAGE BORES MONITORING

Bores: BH13, BH14, BH16 and BH17

All bores are located to the immediate north of the winter storage dam wall. They are all shallow bores, ranging in depth from 3m to 7.5m. These bores are all shallow in depth compared to the background and irrigation monitoring bores and are measuring shallow aquifers or moisture in colluvial layers only.

4.4.1 Chemical Analysis

All results are provided in Attachment A.

рΗ

Winter storage bores were typically neutral to alkaline across all bores (6.8 - 7.8) which is typical compared to historical data.

Electrical Conductivity

EC in the winter storage bores ranged from 680μS/cm (BH14, January 2025) to 1200μS/cm (BH16 and BH17, January 2025). BH16 has remained relatively stable with a

slight decrease since July 2021, with all other winter bores having remained relatively stable.

Nitrate

Nitrate values ranged from <0.1mg/L to 5.7mg/L (BH16, January 2025). All winter storage bores have exhibited low to very low levels of nitrate which is a continuing trend over the last five years, however, nitrate levels have increased during this monitoring period for BH16 in July 2024 and January 2025.

4.5 GROUNDWATER DEPTH MONITORING

Groundwater piezometric depth monitoring takes place on a quarterly basis. All depths are measured from the top of the bore casing which ranges from 200mm to 1000mm above ground level.

Monitoring commenced with the installation of four bores in 1997 and a further 14 bores followed in 2001 to coincide with the commencement of mill operations. In 2006, 30 new groundwater monitoring bores were installed to gain a better understanding of the groundwater characteristics up-gradient of, and within the irrigation area. Historically the background, winter storage and irrigation bores all exhibit similar trends, consistent with peaks and troughs that coincide with recharge from winter and spring rainfall.

Background, irrigation, and winter storage bore groundwater piezometric depths had progressively declined in the 2024/25 monitoring period after a slight increase between 2020 and 2023. Below average monthly rainfall for the 2024/25 monitoring period is likely the reason for the decline in groundwater depths. Above average monthly rainfall from December 2024 to February 2025 led to a slightly increased groundwater depths for most bores, indicating that groundwater recharge through rainfall is taking place.

A graphical view of groundwater depths during the 2024/25 monitoring period is provided **in Figures 6**, **7** and **8**.

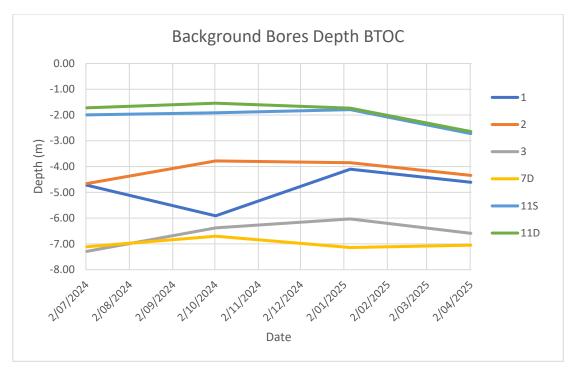


Figure 6: Depth of background (non-irrigation) bores at Gadara Park in metres below top of casing (BTOC)

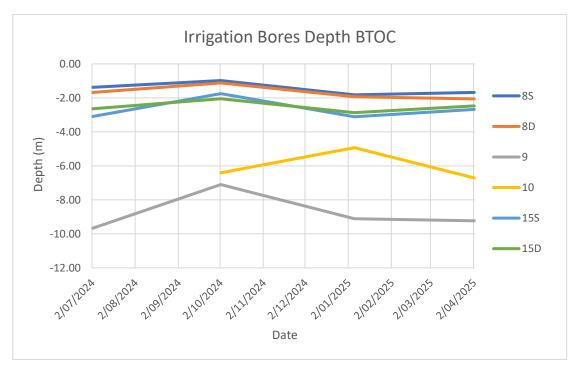


Figure 7: Depth of irrigation bores at Gadara Park in meters below top of casing (BTOC)

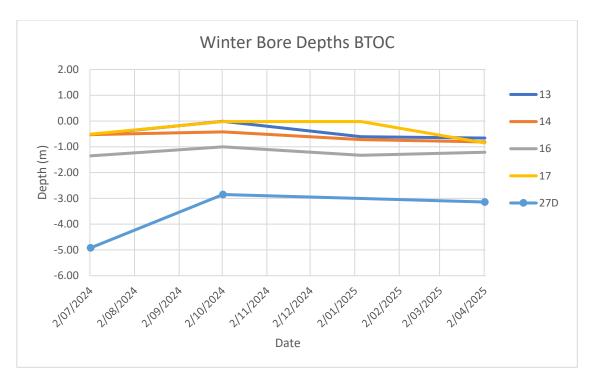


Figure 8: Depth of winter storage bores at Gadara Park in meters below top of casing (BTOC)

4.6 GROUNDWATER CONCLUSIONS

The groundwater piezometric levels in 2024/25 were similar to the trends monitored in the 2023/24 period. Historically, the groundwater piezometric levels are quite dynamic with a peak in October to January following recharge from winter and spring rains. Above average rainfall from December to February of the 2024/25 monitoring period saw this trend continue with most bores experiencing peak levels in October 2024 or January 2025. The majority of bores declined in levels during the July 2024 monitoring round which follows historical trends of the site. The shallow alluvial aquifers at Gadara Park rely heavily on recharge from rainfall to maintain a constant level. The cyclic trend of groundwater piezometric levels corresponding with rainfall as explained by Coffey is apparent from the historical monitoring data (Coffey, 2003).

Background bores exhibit low levels of EC and nitrate.

The irrigation bores exhibit elevated levels of nitrate compared to the background and winter storage bores. The irrigation bores exhibit steady levels of EC typical of alluvial aquifers. The levels of EC in the irrigation bores are slightly higher than in the background bores as a historical comparison. This same comparative trend was noted by Coffey (Coffey, 2003).

Winter storage bores exhibit elevated levels of pH and EC compared to the background and irrigation bores, especially in bores 16 and 17. Levels have remained relatively stable since 2003, with some minor seasonal fluctuations consistent with the background and irrigation monitoring bores.

Overall, the bores have remained relatively stable (with some seasonal fluctuations) in piezometric depth and chemical composition since monitoring commenced, pre-mill construction.

5 SURFACE WATER ASSESSMENT

5.1 Surface water monitoring sites

The surface water monitoring sites are outlined in the following map of the Visy mill and Gadara Park farm site, **Figure 9**. Three of the monitoring sites are upstream (SW1, SW3 and SW4) of all mill and irrigation activities and the other two sites are downstream (SW2 and SW5).

The monitoring results from sites upstream of the mill are compared against downstream results to determine if the mill and irrigation activities are having an effect on water quality.

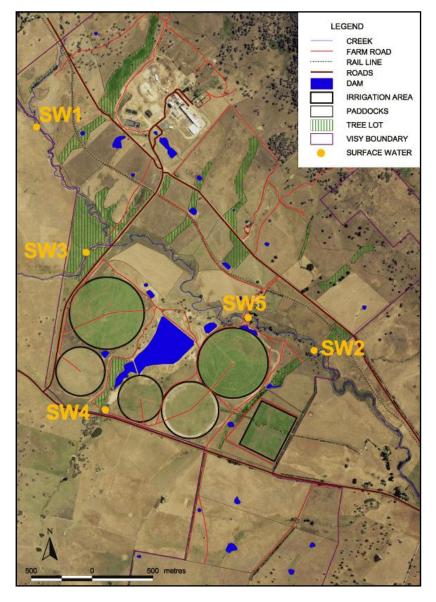


Figure 9: Surface water monitoring points at Gadara Park

5.1.1 Surface Water Site 1 (SW1)

SW1 (surface water monitoring north) is located on the upstream boundary of the Visy mill site. The monitoring site is in an incised creek line (around three metres deep), see **Figure 10**. Cattle can access the site from the neighbouring farm. There has always been some evidence of cattle around the monitoring site in the form of manure and tracks. The water is mostly running, albeit in limited amounts and water quality has generally been good.

This sampling location monitors water quality offsite and upstream of the mill site (Visy 2003).

Figure 10: Surface water monitoring point number 1

5.1.2 Surface Water Site 2 (SW2)

SW2 (surface water monitoring south) is located downstream of the Visy mill site and is the widest stretch of the creek. There has always been running water at this site and it is on the bend of the creek with a small sandy beach, see **Figure 11**.

This sampling location monitors water quality downstream as it departs the mill site (Visy 2003).

Figure 11: Surface water monitoring point number 2

5.1.3 Surface Water Site 3 (SW3)

SW3 (surface water monitoring deep creek) is located on Deep Creek upstream of the Visy mill site. The site is a widened pool within an incised creek line, see **Figure 12**. Water quality has generally been fair to good. There has consistently been particulate matter in the form of algae observed in the water column during sampling. This area is surrounded by a tree lot that is infrequently grazed.

This sampling location monitors water quality in Deep Creek before it joins Sandy Creek (Visy 2003).

Figure 12: Surface water monitoring point number 3

5.1.4 Surface Water Site 4 (SW4)

SW4 (surface water monitoring Snowy Mountains Highway) is located on the Snowy Mountains Highway and is down stream of the Visy mill site and farm. Water analysis usually returns high rates of suspended solids and TDS. The site is at the plateau of an extremely large catchment that has had only intermittent low flows since monitoring commenced in November 2003. With sufficient rainfall, the monitoring site receives high flows of water from the catchment which improves chemical quality.

SW4 is aesthetically the poorest surface water monitoring site because of the usually stagnant and discolored water, see **Figure 13**. Although this site is considered aesthetically poor, there is an abundance of macro invertebrates and aquatic fauna, indicating reasonable water quality.

This sampling location monitors water quality from upstream of the mill and irrigation areas, (Visy 2003).

Figure 13: Surface water monitoring point number 4

5.1.5 Surface Water Site 5 (SW5)

SW5 (surface water monitoring Sandy Creek) is located on the Visy farm at the creek crossing in the center of the farm, see **Figure 14**. The water quality has generally been fair to good with constant running water.

This sampling location monitors water quality in Sandy Creek as it passes beside the irrigation areas, (Visy 2003).

Figure 14: Surface water monitoring point number 5

5.2 CHEMICAL ANALYSIS

All results are provided in Attachment B.

Total Dissolved Solids

All sites exhibit low levels (<700mg/L) of TDS. The results ranged from 160mg/L (SW1, October 2024) to 660mg/L (SW4, April 2025). There are no significant long-term trends developing other than seasonal peaks in summer and autumn, consistent with lower surface water flows.

Electrical Conductivity

All sites exhibited relatively stable EC readings for all sites over the 2024/25 monitoring period, with values ranging from 290µS/cm (SW1, October 2024) to 1,100µS/cm (SW4, April and March 2025). The historic average EC reading for all sites is 476.8µS/cm which remains consistent with this monitoring period.

Biochemical Oxygen Demand

All BOD readings met the (ANZG, 2018) criteria of <15mg/L except SW4 in January 2025 (21mg/L), February 2025 (22mg/L), March 2025 (16mg/L) and April 2025 (39mg/L).

рΗ

The surface water pH for all sites ranged from 6.9 (SW1, January 2025) to 7.8 (SW5 October 2024). The recommended pH range for upland streams is between 6.0 and 7.5

(ANZG, 2018). Although the surface water pH is sometimes above the upper guideline value, pH results are consistent between all upstream and downstream monitoring sites suggesting this is inherent to the locale, (ANZG, 2018). Historical data shows similar pH levels since monitoring commenced in 2003.

Faecal coliforms

All surface water monitoring sites exhibit generally low to high levels of faecal coliforms with a range between <1fcu/100mL (SW3 November 2024) and 10,000,000fcu/100mL (SW1 January 2025). Levels of faecal coliforms were above 2000/100mL on four occasions (SW1 January 2025, SW1 February 2025, SW4 February 2025 and SW4 April 2025) throughout the 2024/25 monitoring period. The historical average faecal coliforms measure for the site is 13,828.9/100mL which is significantly lower than SW1 in January 2025.

Nitrogen and phosphorus

Nitrogen levels for all sites ranged from 0.28mg/L (SW1 November 2024) to 21.0mg/L (SW4 April 2025). Phosphorus ranged from <0.02mg/L (multiple readings) to 3.5mg/L (SW4 April 2025). The nitrogen and phosphorus levels are consistent with historical data.

Oil and grease

Oil and grease readings ranged from <5mg/L (multiple sites) to 24mg/L (SW5 April 2025). Two sites (SW5 and SW3 in April 2025) had readings above the (ANZG 2018) recommended level of oil and grease of 5mg/L.

The Hexane Extractable Matter (HEM) APHA 5520 D EPA method was used to test oil and grease. This test detects non-volatile hydrocarbons, chlorophyll, animal fats, vegetable oils, waxes, soaps, greases etc. The HEM method is not designed specifically to detect fuel or fuel oil. The results that are above detectable levels could be due to the detection of any of the above material and are likely to be from a natural source. No known fuel-related, grease-related, or oil-related contaminating activities take place at or upstream of the surface water sites.

6 Wastewater assessment

6.1 Wastewater monitoring site

Treated wastewater was sampled from a tap on the decant line (Point 10) that runs from the 2.5ML decant storage dam to the winter storage dam until December 2021, after unusually high readings (8 December 2021) were observed owing to alterations to pipework in the system. Since December 2021, the treated wastewater sample has been taken directly from the 2.5ML decant storage dam at the direction of Visy for a more representative sample of the wastewater that runs to the winter storage dam. In total, 12 samples were collected in 2024/25.

6.2 CHEMICAL ANALYSIS

All results are provided in **Attachment C**.

BOD

BOD levels ranged from <5mg/L to 12mg/L with a mean of 8.5mg/L, which is classed as low strength effluent (<40mg/L) for irrigation (DEC 2004) and below the licence limit of 40mg/L.

TDS

TDS ranged from 160mg/L to 240mg/L. All results are classed as a low strength effluent (<600mg/L) for irrigation, (DEC 2004).

SAR

SAR ranged from 2.6 to 4.4. The mean SAR for the 2024-25 monitoring period is 4, which is similar to the readings from the previous five monitoring periods.

Nitrogen and phosphorus

The levels of total nitrogen range from 2.2mg/L to 5.8mg/L with a mean of 4mg/L, which is classed as a low strength effluent (<50mg/L) for irrigation, (DEC 2004) and below the licence limit of 20 mg/L.

Phosphorus levels range from below detectable limits 0.47mg/L to 1.6mg/L. All results are below the licence limit of 5mg/L. The mean of 0.9mg/L is classed as a low strength effluent (<10mg/L) for irrigation, (DEC 2004).

рΗ

The pH of the wastewater samples ranged from neutral to alkaline with a range of 6.6 to 7.0. The mean pH level for 2024/25 was 6.8 and is inside the suitable range of 6.0 to 8.5 for irrigation, (ANZG, 2018).

Suspended solids

The suspended solids readings ranged from 7mg/L to 31mg/L. Results were below the EPA licence limit of 45mg/L.

Zinc

Low levels of zinc were found in all samples ranging from 0.008mg/L to 0.046mg/L. The results were under the guidelines for irrigation of 2mg/L, (ANZG, 2018).

Oil and Grease

Oil and grease levels ranged from <1mg/L to 24mg/L. All results are below the EPA licence limit of 5mg/L except for SW5 in March 2025 with a reading of 24mg/L.

The Hexane Extractable Matter (HEM) APHA 5520 D EPA method was used to test oil and grease. This test detects non-volatile hydrocarbons, chlorophyll, animal fats, vegetable oils, waxes, soaps, greases etc. The HEM method is not designed specifically to detect fuel or fuel oil. The results that are above detectable levels could be due to the detection of any of the above material and is likely to be from a natural source. No known fuel-related, grease-related or oil-related contaminating activities take place at or upstream of the surface water sites.

7 IRRIGATION ASSESSMENT

A total volume of 744.18 megaliters (ML) of water was land applied during the 2024/25 irrigation season. Of the 744.18ML irrigated, most of the source is treated wastewater, the remaining volume being direct runoff from rainfall into the winter storage dam, runoff pumped from the irrigation run off dams and backwash water from the irrigation filters.

The amount of wastewater irrigated in 2024/25 is 268.18ML higher than the long-term average of 476ML per annum, and just below the irrigation amount for 2023/24, Table 3. The highest monthly irrigation amounts occurred from October 2024 until January 2025. Irrigation was reduced from 2007 to 2009 owing to the mill conducting water re-use trials in the production cycle and less rainfall runoff into the winter storage dam due to the drought conditions but has increased significantly in the last three years.

Table 3: Historical irrigation amounts

Season	Irrigation area (ha)	Volume irrigated			
Cousen	migation area (na)	Total (ML)	ML/ha		
2003-2004	110.86	568	5.12		
2004-2005	110.86	615	5.55		
2005-2006	110.86	512	4.62		
2006-2007	110.86	258	2.33		
2007-2008	110.86	233	2.10		
2008-2009	110.86	153	1.38		
2009-2010	110.86	74	0.67		
2010-2011	110.86	368	3.32		
2011-2012	110.86	428	3.86		
2012-2013	110.86	762	6.91		
2013-2014	110.86	261	2.35		
2014-2015	110.86	644	5.81		

2015-2016 110.86 617 5.57 2016-2017 110.86 500 4.53 2017-2018 110.86 545 4.92 2018-2019 110.86 372 3.35 2019-2020 110.86 368 3.33 2020-2021 110.86 513 4.63 2021-2022 110.86 852 7.68 2022-2023 110.86 894 8.06 2023-2024 110.86 830 7.49 2024-2025 110.86 744 6.71				
2017-2018 110.86 545 4.92 2018-2019 110.86 372 3.35 2019-2020 110.86 368 3.33 2020-2021 110.86 513 4.63 2021-2022 110.86 852 7.68 2022-2023 110.86 894 8.06 2023-2024 110.86 830 7.49	2015-2016	110.86	617	5.57
2018-2019 110.86 372 3.35 2019-2020 110.86 368 3.33 2020-2021 110.86 513 4.63 2021-2022 110.86 852 7.68 2022-2023 110.86 894 8.06 2023-2024 110.86 830 7.49	2016-2017	110.86	500	4.53
2019-2020 110.86 368 3.33 2020-2021 110.86 513 4.63 2021-2022 110.86 852 7.68 2022-2023 110.86 894 8.06 2023-2024 110.86 830 7.49	2017-2018	110.86	545	4.92
2020-2021 110.86 513 4.63 2021-2022 110.86 852 7.68 2022-2023 110.86 894 8.06 2023-2024 110.86 830 7.49	2018-2019	110.86	372	3.35
2021-2022 110.86 852 7.68 2022-2023 110.86 894 8.06 2023-2024 110.86 830 7.49	2019-2020	110.86	368	3.33
2022-2023 110.86 894 8.06 2023-2024 110.86 830 7.49	2020-2021	110.86	513	4.63
2023-2024 110.86 830 7.49	2021-2022	110.86	852	7.68
	2022-2023	110.86	894	8.06
2024-2025 110.86 744 6.71	2023-2024	110.86	830	7.49
	2024-2025	110.86	744	6.71

Table 4 presents the breakdown of the volume of water applied to the five Centre Pivot (CP) irrigators (CP1 to CP5) and a soft hose travelling (SHT) irrigator.

Table 4: Amount of water irrigated to land 2024/25

Month	CP1	CP2	СРЗ	CP4	CP5	SHT	Total
July 2024	0.00	0.00	0.00	0.00	0.00	0.00	0.00
August 2024	6.81	2.92	6.19	4.00	2.92	0.00	22.83
September 2024	16.17	6.92	14.70	9.51	6.92	0.00	54.23
October 2024	30.65	13.12	27.86	18.02	13.12	0.00	102.76
November 2024	30.08	12.88	27.34	17.68	12.88	0.00	100.86
December 2024	38.88	21.93	35.34	30.11	21.93	0.00	148.17
January 2025	56.32	19.80	51.20	33.11	22.66	4.80	187.88
February 2025	22.56	5.83	20.50	8.01	5.83	0.00	62.73
March 2025	23.84	0.00	9.29	0.00	0.00	0.00	33.12
April 2025	0.00	0.00	8.77	1.42	0.00	0.00	10.19
May 2025	0.00	0.00	0.00	5.68	5.14	0.00	10.81
June 2025	3.66	0.01	3.40	1.87	1.65	0.00	10.58
Total ML	228.96	83.40	204.58	129.40	93.04	4.80	744.18
Area ha	28.27	12.06	25.70	16.60	11.15	17.50	110.86
ML/ha	8.10	6.92	7.96	7.80	8.34	0.27	6.71

7.1 IRRIGATION SCHEDULING

Wastewater application rates aim to match crop types to ensure sustainable and efficient plant water use. The amount of water irrigated in 2024/25 (depending on water availability) is closely matched with anticipated crop water demand. Over the 2024/25 summer irrigation season CP2, CP4 and CP5 were sown to lucerne & white clover, CP1 and CP3 to rye, clover and millet and SHT to millet.

When irrigation is taking place, scheduling is reviewed daily considering weather conditions, soil moisture, crop performance and the available irrigation resource. Gadara Park has excellent irrigation monitoring resources including:

- Soil moisture probes installed in each irrigation field with sensors located at 10cm, 30cm and 50cm;
- Evapotranspiration (ET_o) data available from interpolated dataset;
- Accurate irrigation application scheduling through the centre pivots;
- Annual soil analysis; and
- Accurate winter storage capacity data.

The correlation between crop daily water requirements, based on ET_{\circ} , and actual water use are demonstrated in Table 5. The ET_{\circ} value is from the SILO Data Drill for Lat, Long: -35.30S 148.15E (decimal degrees). This value is interpolated from surrounding Bureau of Meteorology weather stations with adjustments made for elevation. Wind speed is capped at two metres per second, which would exclude the extremely high ET_{\circ} days from the data. Potential ET_{\circ} is calculated as per FAO Irrigation and Drainage Paper 56. Effective rainfall has been calculated on the assumption that rainfalls of <5mm during the irrigation period are non-significant. In winter, all the rainfall is assumed to be effective (Qassim and Ashcroft, 2001).

At Gadara Park, water balances are regularly calculated to ensure irrigation supply is matched to crop demands. The water balance for CP3 has been supplied to demonstrate that sustainable irrigation is taking place, with applications on par with crop water demand, Table 5. Irrigation efficiency is commonly 85 to 90%, therefore the amount irrigated will sometimes be slightly more than the plants water requirement. Water losses include drift, evaporation, runoff, and deep drainage. The actual amount of water irrigated is aimed to match the daily crop water requirements, Table 5. The irrigation of CP3 in February 2025 was typical of irrigation scheduling throughout 2024/25 where irrigation occurred on an establishment or production-oriented basis favouring the planted crops used for grazing and/or hay production.

By irrigating smaller amounts more frequently, the risk of surface runoff or through drainage occurring is greatly minimised, therefore reducing potential environmental impacts. Runoff is monitored by a visual inspection of the irrigation areas while through drainage can be assessed by reviewing the real time soil moisture probes and the piezometers installed in the irrigation areas. Runoff and through drainage can occur when irrigation is scheduled in larger amounts of water at a lesser interval. The centre pivot irrigation system at Gadara Park is extremely versatile in the amount of water able

to be irrigated by altering the speed of the rotation and droplet size with the use of adjustable nozzles.

Table 5: Irrigation scheduling and ETo data, February 2025 CP3

Date	Temp. Min °C	Temp. Max °C	Rain mm	ETo mm	Crop factor	Water requirement mm	Actual irrigation mm
01/02/25	16.3	34.9	0.0	7.0	1.2	8.4	0.0
02/02/25	17.0	35.9	0.0	7.3	1.2	8.8	8.5
03/02/25	15.0	36.5	0.0	7.3	1.2	8.8	12.1
04/02/25	18.1	36.8	0.0	7.1	1.2	8.5	12.1
05/02/25	19.8	36.6	0.0	6.4	1.2	7.7	12.1
06/02/25	17.2	35.1	0.0	6.9	1.2	8.3	3.5
07/02/25	18.8	36.0	0.4	6.6	1.2	7.9	0.0
08/02/25	17.8	30.4	8.2	4.6	1.2	5.5	0.0
09/02/25	17.3	31.2	0.5	5.4	1.2	6.5	0.0
10/02/25	15.6	29.0	9.5	5.5	1.2	6.6	0.0
11/02/25	14.0	29.6	8.0	5.2	1.2	6.2	0.0
12/02/25	15.9	31.5	0.0	5.8	1.2	7.0	0.0
13/02/25	17.5	32.8	0.0	6.0	1.2	7.2	0.0
14/02/25	19.5	24.2	20.2	2.0	1.2	2.4	0.0
15/02/25	12.8	21.9	8.9	4.4	1.2	5.3	0.0
16/02/25	6.5	21.4	0.0	4.7	1.2	5.6	0.0
17/02/25	7.0	25.6	0.0	5.3	1.2	6.4	0.0
18/02/25	9.0	27.6	0.0	5.0	1.2	6.0	0.0
19/02/25	10.4	28.1	0.0	5.2	1.2	6.2	0.0
20/02/25	12.0	28.0	0.0	5.1	1.2	6.1	0.0
21/02/25	12.1	29.8	0.0	5.7	1.2	6.8	0.0
22/02/25	14.9	31.7	0.6	5.7	1.2	6.8	0.0
23/02/25	17.2	30.8	0.0	4.8	1.2	5.8	0.0
24/02/25	15.9	31.8	2.4	5.7	1.2	6.8	4.0
25/02/25	14.4	30.7	0.0	5.6	1.2	6.7	12.1
26/02/25	16.2	33.3	0.0	6.1	1.2	7.3	12.1

27/02/25	15.7	36.3	0.0	6.3	1.2	7.6	3.5
28/02/25	15.0	33.3	0.0	5.9	1.2	7.1	0.0
TOTALS		58.7	158.6	-	190.3	80	

8 IRRIGATED CROP ASSESSMENT

8.1 Crops grown and yields

In July 2025, CP1 and CP3 are currently sown to rye and white clover and CP2, CP4 and CP5 are all currently sown to lucerne, clover and rye while SHT is currently sown to oats and rye.

8.2 IRRIGATION CROPPING PROGRAM

Details of the crops currently grown at Gadara Park and what is planned to be grown in the following seasons are given in **Tables 6** to **10**. The amount and type of crop grown is dependent on available water, seasonal conditions and crop rotations.

Presently the cropping program revolves around having a perennial crop of lucerne planted in irrigation areas for a period of around five years then rotated with cereal crops for two to three years for a weed and disease break. Having this cropping rotation in the irrigation areas ensures flexibility of irrigation management and grazing regarding timing and amount of irrigation.

Table 6: Irrigated summer/autumn cropping for season 2024/25

Field	Crop	Growing season	Irrigation period
CP1 – 28.3 ha	Rye, Clover & Millet	Spring Summer Autumn	Spring Summer Autumn
CP2 – 12.1 ha	Lucerne & White Clover	Spring Summer Autumn	Spring Summer Autumn
CP3 – 25.7ha	Rye, Clover & Millet	Spring Summer Autumn	Spring Summer Autumn
CP4 – 16.6ha	Lucerne & White Clover	Spring Summer Autumn	Spring Summer Autumn
CP5 – 10.2ha	Lucerne & White Clover	Spring Summer Autumn	Spring Summer Autumn
SHT – 17.5ha	Shirohie Millet	Autumn Winter Spring	Spring Summer Autumn

Table 7: Irrigated winter/spring cropping for season 2025

Field	Crop	Growing season	Irrigation period
CP1 – 28.3 ha	Rye & White Clover	Autumn Winter Spring	Spring Summer Autumn
CP2 – 12.1 ha	Lucerne, Clover & Rye	Autumn Winter Spring	Spring Summer Autumn
CP3 – 25.7ha	Rye & White Clover	Autumn Winter Spring	Spring Summer Autumn
CP4 – 16.6ha	Lucerne, Clover & Rye	Autumn Winter Spring	Spring Summer Autumn

Visy Farm and Environmental Monitoring Report

CP5 – 10.2ha	Lucerne, Clover & Rye	Autumn Winter Spring	Spring Summer Autumn
SHT – 17.5ha	Oats & Rye	Autumn Winter Spring	Spring Summer Autumn

Table 8: Irrigated summer/autumn cropping for season 2025/26

Field	Crop	Growing season	Irrigation period
CP1 – 28.3 ha	Sorghum, Rye & Clover	Summer Autumn	Spring Summer Autumn
CP2 – 12.1 ha	Sorghum, Lucerne, Rye, Clover	Summer Autumn	Spring Summer Autumn
CP3 - 25.7ha	Sorghum, Rye & Clover	Summer Autumn	Spring Summer Autumn
CP4 - 16.6ha	Sorghum, Lucerne, Rye, Clover	Summer Autumn	Spring Summer Autumn
CP5 – 10.2ha	Sorghum, Lucerne, Rye, Clover	Summer Autumn	Spring Summer Autumn
SHT – 17.5ha	Sorghum, Oats & Rye	Summer Autumn	Spring Summer Autumn

Table 9: Irrigated winter cropping for season 2026

Field	Crop	Growing season	Irrigation period
CP1 – 28.3 ha	Rye & White Clover	Autumn Winter Spring	Spring Summer Autumn
CP2 – 12.1 ha	Lucerne, Clover & Rye	Autumn Winter Spring	Spring Summer Autumn
CP3 - 25.7ha	Rye & White Clover	Autumn Winter Spring	Spring Summer Autumn
CP4 – 16.6ha	Lucerne, Clover & Rye	Autumn Winter Spring	Spring Summer Autumn
CP5 – 10.2ha	Lucerne, Clover & Rye	Autumn Winter Spring	Spring Summer Autumn
SHT – 17.5ha	Oats	Autumn Winter Spring	Spring Summer Autumn

Table 10: Irrigated summer/autumn cropping for season 2026/27

Field	Crop	Growing season	Irrigation period
CP1 – 28.3 ha	Lucerne & White Clover	Summer active	Spring Summer Autumn
CP2 – 12.1 ha	Lucerne, Clover & Millet	Summer active	Spring Summer Autumn
CP3 – 25.7ha	Lucerne & White Clover	Summer active	Spring Summer Autumn
CP4 – 16.6ha	Lucerne, Clover & Millet	Summer active	Spring Summer Autumn
CP5 – 10.2ha	Lucerne, Clover & Millet	Summer active	Spring Summer Autumn
SHT – 17.5ha	Brassica	Autumn Winter Spring	Spring Summer Autumn

9 SOIL UNDER IRRIGATION ASSESSMENT

9.1 Soils introduction

The soil monitoring program is conducted in accordance with the Visy EPA Licence 10232. The licence stipulates topsoil monitoring annually and subsoil every three years. This monitoring forms an integral part of crop nutrient budgeting and management. Results are provided in **Attachment D.**

In addition to the test parameters stipulated in the licence, other nutrients are tested as part of the monitoring program to aid the farm manager in decision making for fertiliser application.

9.2 SOIL MONITORING SITES

There are seven soil monitoring sites at Gadara Park, **Figure 15**. These seven soil monitoring sites are split into three sample areas:

- West of the winter storage.
- East and south of the winter storage.
- South-east corner.

9.2.1 West of the winter storage

There are three soil monitoring sites in this area. There are two located in CP1 (SMS1, SMS2), and one under CP2 (SMS3) (Visy, 2003).

9.2.2 East and south of the winter storage

There are three soil monitoring sites in this area. There is one soil monitoring site located under CP3, CP4 and CP5 respectively. SMS4 is in CP3, SMS5 is in CP4 and SMS6 is in CP5, (Visy, 2003).

9.2.3 South-east corner

The only soil monitoring site in this region is SMS7 located in the SHT paddock along the eastern boundary of the Gadara Park property, (Visy, 2003).

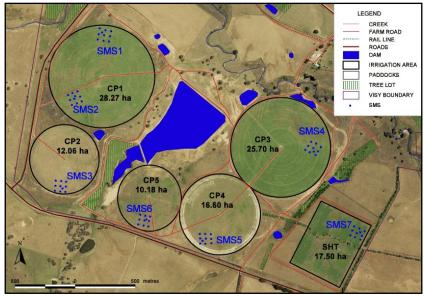


Figure 15: Centre pivots at Gadara Park showing soil monitoring sites

9.3 METHODOLOGY

Currently there is one soil monitoring site (SMS) per 15.7ha of irrigation area. Recommended soil sampling locations are to be distributed at one per 2 to 20ha, depending on the geological complexity of the site, use of effluent by irrigation (DEC, 2004). The SMSs were established in 2000 and have been navigated to using Global Positioning System (GPS) since 2003.

From a monitoring perspective, the SMSs are an accurate gauge of temporal changes in soil parameters at each location. Friesen and Blair (1984) detail that cluster sampling is the most appropriate procedure for estimating the nutrient status of pastures. This sampling method enables more reasonable estimates to be made of the temporal variations in soil tests.

Both surface and sub-surface samples are taken at each site. Approximately 40 topsoil sub samples are collected for compositing within each SMS. Ten subsoil samples are bulked together for analysis within each SMS.

This is in line with the EPL 10232 Condition M2.4 methodology. Special methods 1 and 2. These are as follows:

- Special Method 1: At each soil sampling site, 10 representative samples shall be taken on a 30 metre by 30 metre grid.
- Special Method 2: Sample to be collected in accordance with the current edition of "A Practical Guide for Groundwater Sampling, NSW Department of Land and Water Conservation".

9.4 ELECTROMAGNETIC SURVEYING

The DEC recommends that an electromagnetic (EM) survey be used to identify soil sampling sites (DEC, 2004). An EM survey was carried out in 2001 and again in 2003.

Ground truthing of the EM survey was carried out with soil cores in 2003 and soil pits have also been investigated in the irrigation areas in 2005.

The EM-38 survey measures the apparent electrical conductivity of the soil profile to a depth of 1.5m, which is the effective root-zone of most irrigated crops.

The main purpose of the EM-38 is to aid in the identification of different soil types that may influence soil analysis and crop performance so that management can be tailored to soil type. The EM-38 survey demonstrated a basic correlation between EM-38 readings and soil types. Low EM-38 readings were measured in the high elevation areas, characterised by a deep well drained soil with a substrate of coarse fragments and decomposed rock. High EM-38 readings were measured in the low-lying areas of the paddocks, characterised by poorly drained alluvium overlying clay subsoils. The EM-38 survey and SMS can be seen in **Figure 16**.

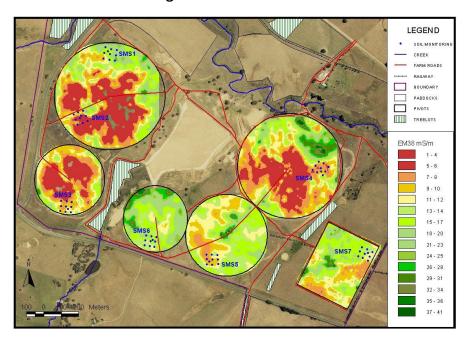


Figure 16: Location of soil monitoring sites in relation to EM-38 survey

9.5 ANALYSIS

Topsoil sampling and analysis was undertaken in October 2024 and April 2025. McMahon also conducts subsoil testing every year (October 2025 and April 2025) to gain better understanding of the sustainable assimilation of nutrients and provide management recommendations based on the results, **Attachment D**.

Overall soil health appears to be good with adequate humus levels and an abundance of earthworms in the topsoil. Topsoil organic carbon levels (as an average across the 7 SMS) have risen from 2.0% in 2003 to 2.7% in October 2024 due to the introduction of perennial crops such as lucerne into the cropping program. However, the average dropped to 1.57% in April 2025.

Over the last 20 years, macro nutrients have improved to more desirable levels due to a comprehensive fertiliser program and topsoil pH has risen with the application of soil ameliorants.

9.5.1 Monitoring October 2024

Topsoil (0-10cm) analysis was undertaken in October 2024 to coincide with the start of the spring/summer irrigation season. Fertiliser recommendations for the crops were made based on the nutrient budget.

рΗ

Soil pH is slightly acidic to neutral with results ranging from 4.7pH(CaCl₂) (SMS7) to 6.6pH(CaCl₂) (SMS6). Typically, the application of alkaline soil ameliorants has been highly successful with an improvement in topsoil pH to within the desirable range of 5.5 to 7pH(CaCl₂), (NSW Agriculture, 1998). However, SMS4 and SMS7 are below the desirable range. A neutral soil pH will improve nutrient and water availability for plants.

Cations

Calcium and magnesium ratios are typical for soils of the local area. Potassium levels range from 1.1% to 4.2% with the higher percentage being SMS7, although this is considered typical for soils of the local area. Sodium levels average 3.3% which is at a suitably low level (NSW Agriculture, 1998).

Aggregate stability

Emerson Aggregate Tests were performed by reference to AS1289.3.8.1 and all soils were categorised as class number 7. A class 7 soil will not undergo mechanical slaking but will swell when immersed in water.

Organic carbon

Organic carbon levels average 2.7% across all sites. This is desirable and indicative of soils with good structural condition, high structural stability, pH buffering capacity, soil nutrient levels and water holding capacity (NSW Agriculture, 1998). These organic carbon levels are slightly higher compared to the 2023/24 monitoring period.

Salinity

The salinity indicator (electrical conductivity) were very low indicating nil short-term salinity risk. Sodium as a percentage of cations has an average of 3.3% for all sites. However, SMS3 was above the desirable range (5.7%). Excessive sodium can cause the soil structure to deteriorate.

Chloride

Chloride levels in October 2024 were not recorded.

Nitrogen

Nitrogen and nitrate levels are generally satisfactory for agricultural production and can be improved by the addition of fertiliser if required.

Phosphorus

Phosphorus levels are generally satisfactory for agricultural production and can be improved by the addition of fertiliser if required.

9.5.2 Monitoring April 2025

Topsoil (0-10cm) analysis was undertaken in April 2025 to coincide with the start of the autumn/winter cropping season. Fertiliser recommendations for the crops were made based on analysis of soil fertility.

На

Soil pH is slightly acidic to neutral with results ranging from 4.9pH(CaCl₂) (SMS7) to 7.4pH(CaCl₂) (SMS2). Soil pH is at a desirable level for all the sampling points except for SMS2 which is above the maximum desirable level of 7(CaCl₂) (NSW Agriculture, 1998). A neutral soil pH will improve nutrient and water availability for plants.

Cations

Calcium and magnesium ratios are typical for soils of the local area. Potassium levels range from 1.7% to 5.1% which at the higher end is above the 1-5% desirable range (NSW Agriculture, 1998). Sodium levels range from 0.9% to 12.3% and average 6.3% across all sites which is above the desirable range (NSW Agriculture, 1998).

Aggregate stability

Emerson Aggregate Tests were performed by reference to AS1289.3.8.1 and soils were categorised as class number 7 (SMS1, SMS4, SMS6, & SMS7) and class number 8 (SMS2, SMS3, & SMS5). A class 7 soil will not undergo mechanical slaking but will swell when immersed in water while class 8 does not swell under the same conditions.

Organic carbon

Organic carbon levels are averaging 1.57%, this is considered to be desirable and is indicative of soils with very good soil structure and high buffering capacity with sufficient organic matter to decrease bulk density and improve water holding capacity (NSW Agriculture, 1998). The paddocks at the time of sampling were spray fallowed and cultivated leading to lower results compared to October 2024.

Salinity

The salinity indicator (electrical conductivity) was very low indicating nil short-term salinity risk. The average sodium as a percentage of cations ranged from 0.9% to 12.3% with an average of 6.3% which, as in October 2024, is above the desirable range. Excessive sodium can cause the soil structure to deteriorate.

Chloride

Chloride levels were not recorded in April 2025.

Nitrogen

Nitrogen and Nitrate levels are generally satisfactory for agricultural production and can be improved by the addition of fertiliser if required.

Phosphorus

Phosphorus levels are generally satisfactory for agricultural production and can be improved by the addition of fertiliser if required.

10 NUTRIENT BALANCE AND FORWARD MANAGEMENT PLAN

The farm nutrient balance forms part of the forward management plan for the wastewater irrigation at Gadara Park, it also satisfies the load-based protocol for the Visy Environment Protection Licence. The nutrient balance and forward management plan are reviewed annually as part of irrigated cropping management. The review ensures maximum nutrient uptake for optimal crop production.

At the commencement of the Visy operations at Gadara Park, the soil nutrient status was poor with below desirable levels for all macronutrients and a very low pH. The macronutrient status and pH at Gadara Park since, has improved due to a strategic fertiliser and amelioration program, and improved cropping management.

Fertiliser is the main source of nutrient supply and application amounts are matched to anticipated crop removal. Nutrients are present in the wastewater but are at insignificant levels to make a marked impact on nutrient availability.

At present, soil testing is carried out bi-annually to coincide with the start of the winter and summer cropping programs. Nutrient budgets are calculated with current soil nutrient status for the crops to be grown, with likely nutrient efficiency and removal. Factors such as anticipated yield, irrigation amounts, rainfall, weed burden, crop variety and seeding rate are taken into account when budgeting actual nutrient removal and supply.

The aim for future nutrient application is to maintain a sustainable macro nutrient bank in the soil that will boost crop production for more efficient water use and crop production.

10.1 NUTRIENT BALANCE MANAGEMENT

The NSW EPA load based licensing protocol details that the following conditions be carried out for licensees to obtain the full fee discount for effluent irrigation.

Condition 1: Have developed a 15 year forward management plan that shows how proposed annual nutrient application rate compares with the annual amounts to be

taken up by the biological or physical processes of the crop-soil system. This should be done before the construction of the effluent reuse scheme. Nutrient application rates must be based on the sustainable assimilation of nutrients over a rolling 15 year period.

The nutrient balance outlines the nutrient status from the soil testing carried out in April 2022. Nutrient removal has been calculated from the ranges outlined in **Table 11** and efficiency factors have been determined from historical seasonal conditions encountered. The nutrient balance table outlines crop species, seeding rate and an estimated sowing date. The sowing date will change from year to year to suit the cropping programs and seasonal conditions. Perennial crops such as lucerne and ryegrass for example are only sown every five years or so. The table also outlines estimated fertiliser application and nutrient addition from wastewater and biological processes. The areas for which the nutrient balance has been calculated are the centre pivots and soft hose traveler paddock, **Figure 15**. The 15 year rolling nutrient balance can be seen in **Attachment E**.

10.2 NUTRIENT SUPPLY

Nutrients are supplied in the form of fertiliser and wastewater. Nitrogen is also supplied by soil biological processes of mineralisation and fixation.

10.2.1 Fertiliser

Fertiliser is the main source of nutrients at Gadara Park. A starter fertiliser (Nitrogen (N) Phosphorus (P) Potassium (K) Sulphur (S) at a ratio of 18.22.0.1) is used at sowing to supply the crops with the season's phosphorus supply and some nitrogen. Crops are usually top dressed with granular urea (NPKS 42.0.0.0) or with liquid nitrogen through the centre pivot or boom spray. Legumes will generally be top dressed with single super (NPKS 0.9.0.11) to supply adequate phosphorus and sulphur. Additional nutrients and trace elements can be added when suitable.

10.2.2 Waste water

A volume of approximately 744.18 megalitres of wastewater was applied in 2024/25 to approximately 110 hectares of farmland at Gadara Park via existing centre pivots (five of them) and the soft hose traveler irrigator. The irrigation of the wastewater is controlled by Visy's wastewater management plan and the EPA licence conditions. The amounts of nitrogen and phosphorus in the wastewater are very low and are the lowest contributors of nitrogen and phosphorus to the nutrient balance.

10.2.3 Mineralisation

Mineralisation is a process that releases nitrogen from soil organic matter while the temperature and moisture conditions are suitable for the soil microbes to function effectively. As a general rule, mineralisation rarely exceeds 80kg nitrogen per hectare per year. A rate of 40kg nitrogen per hectare per season has been used to approximate mineralisation.

10.2.4 Fixation

Further nitrogen addition is present in the form of fixation from legume crops. The principal annual legume crop grown will be a high density legume consisting of a clover mix. The principal perennial legume crop grown will be lucerne. It is estimated that the high density legume will add approximately 100kg nitrogen per hectare per year (Tisdale et al, 1998). Legumes fix around 20kg nitrogen per tonne dry matter per year - but most of this goes into the organic nitrogen pool. However, the amount of mineral nitrogen available to plants in autumn and early winter will increase in proportion to kilograms per hectare of legume dry matter grown the previous spring. The conversion of atmospheric nitrogen to organic nitrogen is called fixation (Agricultural Bureau of South Australia, 1997).

Experimental estimates of the total annual inputs of fixed nitrogen by grazed lucerne-based pastures range from 80-190kg nitrogen per hectare per year in a Mediterranean-type climate (Peoples et al, 1998).

10.3 NUTRIENT REMOVAL

Nutrient removal will be influenced by the type of crops grown, seasonal weather, sowing rate and general plant health. The following **Table 11** has been used as a general guide for nutrient removal ranges, (Reuter and Robinson, 1997).

Table 11: Nutrient removal ranges for crops grown at Gadara Park

Crop	Normal nutrient removal range (kg/ha)											
Стор	Nitrogen	Phosphorus	Potassium									
Irrigated pasture (cut)	160-400	24-60	120-300									
Lucerne hay (cut)	155-465	15-45	125-375									
Maize silage	220-550	50-125	200-500									
Forage sorghum	220-440	30-60	240-480									
Winter cereal hay	200-400	30-60	160-320									
Seed barley	38-95	6-15	8-20									
Seed wheat	38-95	8-20	10-25									
Triticale	29-57	6-12	9-18									
Seed oats	15-75	3-15	4-20									
Chickpeas	20-80	2-8	2-8									
Cowpeas	15-60	2-8	10-40									
Faba beans	40-120	4-12	12-36									
Lupins	22-90	1-6	4-16									

10.3.1 Seasonal influence

Nutrient uptake is heavily influenced by seasonal conditions:

Winter season

The winter growing season at Gadara Park is considered extended because of an early sowing date made possible by irrigation. This gives the winter crops a high nutrient removal rate. Another factor influencing a long growing season is the cool spring climate which aids a long stage of plant development which in turn means a late harvest.

Summer season

The summer growing season at Gadara Park is considered short with a low to medium level of nutrient removal. The rationale for this is the comparatively cooler climate at Gadara Park and cooler temperatures which will influence nutrient removal.

10.4 DEPTH OF NUTRIENT REMOVAL

Phosphorus removal has been calculated to 10cm depth. The majority of phosphorus is placed as fertiliser at sowing which is normally to a depth of between 5cm and 7.5cm.

Nitrogen removal has been calculated to a depth of 10cm which is the effective zone of the majority of nitrogen supply and mineralisation at Gadara Park. Mineralisation has been assumed to be 40kg per hectare for the winter cropping period.

The irrigation paddocks at Gadara Park are sampled to a depth of 60cm to assess root zone nitrogen status for the summer crops. Summer crops such as maize will have an effective root zone depth of approximately 60cm and are therefore tested accordingly. The nitrogen fertiliser rate is usually determined by considering the cropping history of the field in conjunction with a soil test for mineral nitrogen (Hocking, Norton and Good, 1999). Growers are advised to use a deep (60cm) soil test for mineral N for calculating N fertiliser requirements. The deep soil test can detect any nitrate-N accumulated at depth. Values for mineral N in soils are typically 30-140kg nitrogen per hectare.

Condition 2: Review the plan every 3 years to ensure that future planned application rates will continue to achieve sustainable assimilation over a rolling 15 year period.

The current management at Gadara Park is to assess the nutrient status at the start of every summer and winter cropping program. From the soil analysis, nutrient budgets are calculated and matched to crop type and efficiency. This will ensure the maximum amount of production from the irrigation area.

Soil testing is undertaken at the start of the summer and winter cropping seasons to determine current nutrient status and budget requirements. Soil testing locations have been GPS located so the same sample sites are visited every time.

The plan will be reviewed formally every 3 years as per EPA recommendations to achieve sustainable nutrient assimilation.

Condition 3: Prepare annual nutrient balances showing nutrient application rates and the results of soil monitoring done as set out in the management plan, and how these outcomes compare with those anticipated in the management plan. Documentation of plan and annual balances must be kept for at least four years.

In October 2024 and April 2025 most soil nutrient levels are at desirable levels for agricultural production. The phosphorus levels have always been very low and targeted application of fertiliser has seen a slow build-up of levels to boost soil fertility and agricultural production.

Nitrogen levels at Gadara Park have been low but are building to more favourable conditions for agriculture after adopting a fertiliser program. Soil nitrogen has been identified as the single biggest crop nutrient limiting factor. Nitrogen can be applied to the crops at Gadara Park in the form of granular urea, and liquid fertiliser which can be center pivot applied or boom spray applied. The introduction of legumes to the cropping rotation will help fix nitrogen in the soil for subsequent crops.

11 WHOLE FARM MANAGEMENT

11.1 PASTURE IMPROVEMENT

As an ongoing pasture improvement program, paddocks are developed and renovated on a rotational basis every 5 to 10 years. Perennial pasture species are introduced to suitable paddocks to maximise production over the summer months. In some paddocks where weed burden is high, annual crops are grown for two to three years to prepare them for a wider range of crop and perennial pasture options.

The pasture improvement includes many management facets that are integral to the successful development program. They include:

- Soil testing and analysis;
- Regular paddock inspections;
- Weed monitoring and control programs;
- Insect monitoring and control programs;
- A pasture variety rotation assessment;
- Seasonal assessment and outlook considerations; and
- Budgetary assessment.

11.2 TREE MANAGEMENT

In total, Gadara Park currently has 73 hectares of planted native tree lots in riparian zones and along drainage lines. The tree lots have been established and maintained over the last 18 years as part of a riparian/drainage line stabilisation and habitat improvement program that links the creek flats to the timbered hills.

The areas of tree plantings can be seen in Figure 17.

11.3 WEED MANAGEMENT

The Weed Management Plan for Gadara Park was completed and approved as part of the Landscape and Native Vegetation Management Plan in the Operational Environmental Management Plan (OEMP). Two further properties were acquired in 2007 and 2008, "Havilah" and "Woomera" respectively. Weed management has also been undertaken on these properties as discussed for Gadara Park below. A range of weed control methods are employed as part of the land management on land owned by the company including spraying, insect control and "crash grazing" on the centre pivots where the sheep flock or cattle are put on in larger numbers and left for 2 to 3 weeks. This means that the pasture and weeds are grazed, the pasture recovers and continues to grow but the weed growth is checked.

Comments and observations for 2024/25 are as follows:

- Bathurst Burr has been controlled to a point with ongoing inspection and edification of any new germination. This is a summer weed and has required some spraying and chipping for control;
- Bracken Fern an ongoing reduction program exists, and the fern is mainly occurring in the more inaccessible areas;
- Blackberry ongoing maintenance program of spraying and treatment of any reinfestations continues;
- Paterson's curse is subject to ongoing management. Visy began working with the CSIRO and the Department of Primary Industries (DPI) on a biological control program using four types of insect for the control of Paterson's curse, in 2007 initially within the vegetation corridors, where spraying was unable to be undertaken. The insects however have now spread throughout the property and results have been outstanding. The DPI conducted an Open Day in September 2008 to monitor insect numbers and results and discuss with other landholders the use of these insects, which attracted over 40 people. Overall the insect control has been very successful. Some spraying has been undertaken on thicker areas away from the tree lines.
- Cape Weed a pasture weed that has been subject to an ongoing spraying program with a good kill rate.

• Saffron Thistle - Spraying programs have been undertaken for this weed in the past. It is a difficult weed to control, occurring on the lower slopes with a late germination period.

The requirements of the Weed Management Plan will continue to be implemented.

11.4 FERAL ANIMAL MANAGEMENT

At Gadara Park there are three main feral animals controlled being: rabbits; foxes; and pigs. Each animal is assessed on a routine basis and baiting, trapping or shooting programs are implemented accordingly. Baiting of foxes using 1080 can be implemented on an individual farm or regional basis which is run by the Livestock Health and Pest Authorities. Rabbits are controlled by shooting, baiting, using 1080 and harbour destruction. Wild pigs are sometimes present at Gadara Park and are controlled by shooting and trapping.

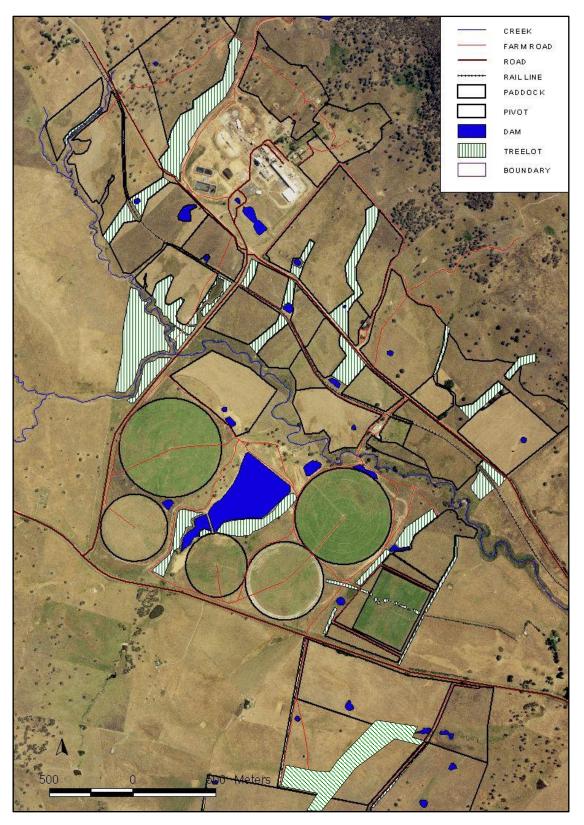


Figure 17: Tree planting

12 BY-PRODUCTS AND THE SOIL AMENDMENT TRIAL

The Soil Amendment Trial (SAT), for evaluating Visy mill by-products as soil ameliorants was completed in 2006 after the compilation and review of four years of soil testing, hay and silage analysis, animal tissue testing and by-product analysis.

The results show a marked increase in topsoil pH, after being measured as highly acidic pre-trial. Increased agricultural production has been a result of the correction in soil acidity, with improved nutrient availability and a greater variety of crops able to be grown.

Soil heavy metal levels have shown no significant increasing trends since the baseline testing was undertaken in 2001. Hay and silage analysis show heavy metals are not bioaccumulating in the plant tissue. Animal tissue testing indicates there are no food safety concerns, or any other concerns related to the heavy metals of interest.

Up until 30 June 2005, the criteria for the application of by-products was the Environmental Guidelines Use and Disposal of Biosolids Products, (NSW EPA, 1997). As of 1 July 2005, the EPA developed new draft guidelines in the "Land Protection Proposal" under the NSW Residue Waste Regulation. On 1 December 2005, amendments to the Protection of the Environment Operations (Waste) Regulation came into effect. The Regulation prohibited the use of the Visy by-products at Gadara Park, or otherwise, until a specific exemption is granted by the EPA.

After consultation with the EPA, Visy resumed the application of dregs & grits and lime mud in 2010 as the by-products satisfied the parameters as set out in the NSW Fertilisers Act, 1985.

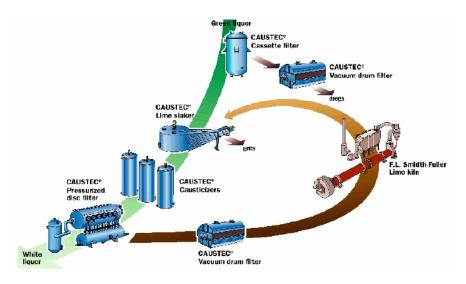
300 tonnes of dregs & grits was land applied to 60 hectares of pasture in 2012 at a rate of 5 tonnes per hectare and 1,520 tonnes was applied to 600 hectares of pasture at a rate of 2.5 tonnes per hectare in January 2013. These applications were approved as one-off exemptions by the NSW EPA.

12.1 SUMMARY OF BY-PRODUCTS AT VISY

Three by-products from the paper making process were used at Gadara Park as soil ameliorants to improve agricultural production. These by-products are green liquor dregs, lime mud and fly ash. A fourth by-product (bottom sand) is inert sand which was previously used to line the roads around the farm, making the roads more readily accessible in wet weather. By-product testing results are provided in **Attachment F**.

12.1.1 Dregs and Grits

Green liquor dregs (process sediment) are a stabilised alkaline by-product. The source is un-burnt carbon and inorganics (calcium and iron compounds) from the green liquor smelt removed through clarification prior to re-causticising. Insoluble materials within the lime are separated and washed after slaking/causticising. The main components of the dregs and grits are calcium carbonate, unburnt carbon, and some sodium compounds. The benefits of the dregs and grits are the good liming characteristics that


raise soil pH and subsequently improve fertility. The drawback of the dregs and grits is the presence of low-level contaminants in chromium, lead, nickel, zinc, and copper.

12.1.2 Lime mud

Lime mud is a stabilised alkaline product. It is obtained after decanting the white liquor following re-causticising. The lime mud is not returned to the lime kiln but is purged out of the system. The main compound of the lime mud is calcium carbonate. A greater amount of lime mud is produced, but the mill reuses the lime mud in the paper making process.

The benefit of the lime mud is its similarity to superfine agricultural lime. The lime mud has a neutralising value of around 95% which is classified as the highest grade agricultural lime. The drawback of the lime mud is low level contamination with lead.

The origin of the dregs, grits and lime mud can be identified below in Figure 18.

The Recausticising process

Figure 18: Figure of the origins of the lime mud and dregs and grits by-products

13 SLUDGE ASSESSMENT

13.1 SLUDGE MONITORING SITE

Twelve samples of sludge were collected in 2024/25 from the treated sludge line running into the storage dam.

Sampling from August 2024 until October 2024 and January 2025 returned unusually high results for multiple parameters, however, overall the results were generally lower than in the previous monitoring period. It was also noted that during the sampling events, the sample was visibly darker, had a strong odour and had a substantial amount of particulate matter. All results can be seen in Attachment G. The sludge is transferred from the Sludge Balancing Tank to a trailer-mounted applicator from which the sludge is

sprayed onto the paddocks. Approximately 584 kilolitres of sludge were land applied in 2024/25. The sludge applicator can be seen in **Figure 19**.

Up until 30 June 2005, the criteria for the application of by-products (including sludge) were the NSW EPA Environmental Guidelines Use and Disposal of Biosolids Products. As of 1 July 2005, the EPA developed new draft guidelines in the "Land Protection Proposal" under the NSW Residue Waste Regulation. On 1 December 2005 amendments to the Protection of the Environment Operations (Waste) Regulation came into effect. The Regulation prohibited the use of the Visy by-products (including sludge) at Gadara Park, or otherwise, until liaison and subsequent approval by EPA.

After consultation with EPA, sludge application resumed in May 2008. The application rates and paddock suitability on Gadara Park is determined by following the NSW Environmental Guidelines, Use and Disposal of Biosolids Products (NSW EPA, 1997).

Figure 19: Sludge being applied to land (Colson 2002)

13.2 CHEMICAL ANALYSIS

BOD

The BOD of the sludge ranged from <5mg/L (April 2025) to 470mg/L (September 2024). The average BOD result for this monitoring period was 183mg/L which is significantly lower than the previous monitoring period's average of 1171.3mg/L which was the highest average for the last five years.

TDS

The TDS values of the sludge ranged from 150mg/L (March 2025) to 260mg/L (December 2024). The average TDS result was 192mg/L which is lower than the 2023-24 monitoring period average result of 227mg/L.

EC

The EC values ranged from 250μ S/cm (April 2025) to 440 (December 2024). The average EC value for sludge for this monitoring period is 329μ S/cm which is within the desirable range.

Nitrogen and phosphorus

Total nitrogen levels ranged from 3.6mg/L (June 2025) to 130mg/L (August and September 2024). Phosphorus levels range from 0.90mg/L (June 2025) to 20 (September 2024). Both nitrogen and phosphorus levels are lower than the results from the previous monitoring period.

рН

The pH of sludge is slightly acidic to neutral ranging from 6.3 to 7.0 and is generally in the desirable range for agricultural purposes (ANZG, 2018).

Suspended solids

The suspended solids ranged from 13mg/L (February 2025) to 2200mg/L (September 2024). A visual inspection of the soil where the sludge has been applied indicates free draining topsoil with good porosity, therefore the presence of suspended solids in the sludge appears to have not adversely affected the drainage by blocking soil pores.

Oil and grease

Oil and grease levels ranged from <5mg/L (multiple readings) to 24mg/L (July and September 2024).

14 RECOMMENDATIONS SUMMARY

The following improvements to the monitoring program are recommended:

- Most of the thirty additional groundwater monitoring bores that were installed in 2005/06 have been damaged or destroyed in 2022 to 2025 monitoring periods when the pivots and paddocks were cultivated. An audit of the condition of these bores is recommended and bores that can glean useful information are recommended to be repaired or replaced.
- Soil moisture probes located in the pivots alongside the groundwater monitoring bores were also damaged or destroyed in the 2022/2023 period. An audit of the condition of these probes is recommended and probes that can glean useful information are recommended to be repaired or replaced.

- The decant (point 10) sample point is recommended to be signposted for a consistent sampling location.
- The sludge sample location has recently been moved (October 2023) from the SBR to the treated sludge discharge line for improved safety. It is recommended this new sampling location be signposted for a consistent sampling location.
- Access to some of the groundwater monitoring locations on the farm is limited owing to gullies and rutted roads and improvement around this is recommended.
- Access to some of the surface water monitoring locations on the farm is limited due to high grass and weeds, improvement around this is recommended.

15 REFERENCES

Allen R.G., Pereira L.S., Raes D. and Smith M. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage paper No. 56. Rome.

ANZG 2018, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian Government Initiative.

Better Soils 1997, Better Soils: Module 3: Soil and Nutrition: Pastures, Agricultural Bureau of South Australia.

Charman, PEV & Murphy, BW 1991, Soils Their Properties and Management, Oxford University Press, Australia.

Coffey Geosciences Pty Ltd 2003, Visy Pulp and Paper Pty Ltd Groundwater Assessment Tumut, Hawthorn, Victoria.

Colson, CL & Cameron, SL 2002, Visy Pulp & Paper Mill Annual Soil Amendment Trial Manual Report, Moonbi, NSW.

DEC 2004, Environmental guidelines, Use of Effluent by Irrigation, Department of Environment and Conservation (NSW), Sydney.

Doorenbos J. and Kassam A.H. 1979. Yield response to water. FAO Irrigation and Drainage paper No.33, p.25, Rome, Italy.

Doorenbos J. and Peruitt W.O. 1992. Crop water requirements. FAO Irrigation and Drainage paper No.24, (Rev.), Rome, Italy.

FAO Irrigation and drainage paper 56. Crop evapotranspiration - Guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations, Rome, 1998.

Friesen, D.K. and Blair, G.J., 1984, A Comparison of Soil Sampling Procedures Used to Monitor Soil Fertility in Permanent Pastures, Australian Journal of Soil Research, 1984, 22, 81-90.

Gunter S (1997) Understanding Soil Tests. NSW Agriculture Publication, Tamworth.

Hazelton, P and Murphy, B 2007, Interpreting Soil Test Results, What do all the Numbers Mean?, CSIRO Publishing Collingwood, Victoria.

Hocking, P, Norton, R & Good, A 1999, "Crop Nutrition", The Regional Institute Ltd: Online Community Publishing, viewed August 2004,

http://www.regional.org.au/au/gcirc/canola/p-05.htm

Li, G, Conyers, M, & Cullis, B, 2004, MASTER: Improved farming systems for degraded soils in the high rainfall zone in south-eastern Australia, NSW Department of Primary Industries.

McDonald, RC, Isbell, RF, Speight, JG, Walker, J & Hopkins, MS 1990, Australian Soil & Land Survey Field Handbook, 2nd edn, Inkata Press, Melbourne.

McNeill, JD 2001, Electromagnetic conductivity terrain measurement at low induction numbers, Technical Note TN-6, Geonics Ltd, Mississauga, Ontario, Canada.

MDBC 1997, Murray-Darling Basin Groundwater Quality Sampling Guidelines Technical Report no. 3, Murray-Darling Basin Commission, Canberra.

NSW Agriculture 1998, Interpreting Soil Results: Rules of Thumb. NSW Agriculture, Wagga Wagga.

NSW EPA 1997, Environmental Guidelines: Use & Disposal of Biosolids Products, NSW Environment Protection Authority, Sydney, NSW.

Peoples, MB, Gault, RR, Angus, JF, Bowman, AM & McCallum, M, 1998, "Comparisons of the efficiency of nitrogen fixation in pastures", Proceedings of the 9th Australian Agronomy Conference, Wagga Wagga.

Peverill, Sparrow & Reuter 1999, Soil Analysis: An Interpretation Manual. CSIRO Publishing, Collingwood.

Qassim, A and Ashcroft, B 2001, Estimating vegetable crop water use with moisture - accounting method, DPI Victoria AG1192 ISSN 1329-8062

QLD Government, 2022, SILO – Australian climate data from 1889 to yesterday,

https://longpaddock.qld.gov.au/silo/>.

Richards, LA 1954, Diagnosis and improvement of saline and alkaline soils, USDA handbook #60, Washington DC, USA.

Rosewell, CJ 1993, SOILLOSS: A program to assist in the selection and management practices to reduce erosion, technical handbook, 2nd edn, Department of Conservation and Land Management, Sydney, NSW.

Reuter, D.J. & Robinson, J.B. (eds), 1997. Plant Analysis - An Interpretation Manual. CSIRO Publishing, Collingwood, Victoria.

Singer, MJ & Munns, DN 1996, Soils an Introduction, 3rd edn, Prentice Hall, New Jersey, USA.

Tisdale, SL, Nelson, WL, Beaton, JD & Havlin JL, 1993, Soil Fertility and Fertilisers, 5th edn, Macmillan Publishing Company.

Visy Pulp and Paper Pty Ltd 2002, "Environmental Compliance and Monitoring Report", Visy Pulp and Paper, Tumut, NSW.

Visy Pulp and Paper Pty Ltd 2003, "Visy Pulp & Paper, Tumut: Comprehensive Monitoring Plan", Visy Pulp and Paper, Tumut, NSW, 18 May.

Wetherby, K 1997, Soil Description Book, Cleve, South Australia.

16 GENERAL GLOSSARY

ANZECC	Australia and New Zealand Environment and Conservation Council
ВТОС	Below Top of Casing
DEC	NSW Department of Environment and Conservation
DECCW	Department of Environment and Climate Change and Water NSW
DPI	Department of Primary Industries
EPA	Environment Protection Authority (NSW)
ET _c	Crop Evapotranspiration (ET₀ multiplied by a Crop Factor)
ET _{pan}	Evaporation measured from a Standard Class A pan (in mm)
Kc	Crop Factor
ET _o	Potential Evapotranspiration calculated using the FAO Penman-Monteith formula (in mm)
NEPC	National Environment Protection Council
SAT	Soil Amendment Trial
TSC	Tumut Shire Council
WWTP	Waste Water Treatment Plant

17 CHEMICAL GLOSSARY

Alkalinity	The capacity of water to neutralise acid
Al	Aluminium
AS	Aggregate Stability (using Emerson Aggregate Test)
BOD	Biological Oxygen Demand
Са	Calcium
CEC	Cation Exchange Capacity
Cl	Chloride
EC	Electrical Conductivity
FC	Faecal Coliforms
К	Potassium
Mg	Magnesium
Mn	Manganese
N	Nitrogen
Na	Sodium
ОС	Organic Carbon
ОСР	Organochlorine Pesticides
P	Phosphorus
PBI	Phosphorus Buffer Index
Na	Sodium
S	Sulphur
SAR	Sodium Adsorption Ratio
SS	Suspended Solids
TDS	Total Dissolved Solids
TKN	Total Kjeldahl Nitrogen
NV	Neutralising Value
ENV	Effective Neutralising Value
As	Arsenic
Cd	Cadmium
Cr	Chromium
Cu	Copper

Visy Farm and Environmental Monitoring Report

Hg	Mercury
Ni	Nickel
Pb	Lead
Zn	Zinc
СР	Crude Protein
DM	Dry Matter
DMD	Digestibility
ME	Metabolisable Energy
NDF	Neutral Detergent Fibre
SolCHO	Water Soluble Carbohydrate

18 ATTACHMENTS

Attachment	Details
A. Groundwater 2024-2025	3 pages
B. Surface water 2024-2025	1 page
C. Point 10 (Wastewater) 2024-2025	1 page
D. SMS October 2024 and April 2025	4 pages
E. Nutrient budget 2024-2025	9 pages
F. By-products 2024-2025	4 pages
G. Sludge 2024-2025	1 page

Attachment A: Groundwater 2024-2025

Test Identity	Unit of measure	Critical Range	BH1 July 2024	BH1 Oct 2024	BH1 Jan 2025	BH1 Apr 2025	BH2 July 2024	BH2 Oct 2024	BH2 Jan 2025	BH2 Apr 2025	BH3 July 2024	BH3 Oct 2024	BH3 Jan 2025	BH3 Apr 2025
Conductivity	μS/cm	350 ¹	320	-	330	-	135	1	190	-	171	-	150	-
Nitrate	ppm	0.7 1	1.7	-	3.1	-	4.5	1	<0.005	-	0.1	-	5.7	-
рН	pH units	6.5-7.5 ¹	5.8	5.5	5.6	-	5.8	5.5	6.0	-	6.6	6.4	6.2	6.4

Test Identity	Unit of measure	Critical Range	BH7S July 2024	BH7S Oct 2024	BH7S Jan 2025	BH7S Apr 2025	BH7D July 2024	BH7D Oct 2024	BH7D Jan 2025	BH7D Apr 2025	BH11S July 2024	BH11S Oct 2024	BH11S Jan 2025	BH11S Apr 2025
Conductivity	μS/cm	350 ¹	Dry	-	Dry	-	452	-	460	-	821	-	520	-
Nitrate	ppm	0.7 1	Dry	-	Dry	-	<0.1	-	0.027	1	<0.1	-	<0.005	-
рН	pH units	6.5-7.5 ¹	Dry	Dry	Dry	-	6.7	6.7	6.5	-	6.8	6.6	6.9	6.7

Test Identity	Unit of measure	Critical Range	BH11D July 2024	BH11D Oct 2024	BH11D Jan 2025	BH11D Apr 2025
Conductivity	μS/cm	350 ¹	769	-	430	-
Nitrate	ppm	0.7 1	0.1	-	0.76	-
pН	pH units	6.5-7.5 ¹	6.9	6.7	6.7	6.7

^{1.} ANZG (2018) Australian & New Zealand Guidelines for Fresh & Marine Water Quality.

Bore Reference	<u>Location</u>
BH1	Onsite upstream of irrigated and by-product areas
BH2	Onsite upstream of irrigated and by-product areas
ВН3	Deep bore off site to monitor upstream groundwater quality and any mounding as a result of the Winter storage
BH4	Deep bore to monitor groundwater quality upstream of irrigation areas, and downstream of Power Boiler Ash applied area
BH7S	Shallow bore to monitor groundwater quality upstream of irrigation areas and downstream of Power Boiler Ash and Lime Mud applied areas
BH7D	Deep bore to monitor groundwater quality upstream of irrigation areas and downstream of Power Boiler Ash and Lime Mud applied areas
BH11S	Shallow bore to monitor groundwater quality off site and upstream of irrigation and By-product applied areas
BH11D	Deep bore to monitor groundwater quality upstream of irrigated and By-product applied areas

Test Identity	Unit of measure	Critical Range	BH8S July 2024	BH8S Oct 2024	BH8S Jan 2025	BH8S Apr 2025	BH8D July 2024	BH8D Oct 2024	BH8D Jan 2025	BH8D Apr 2025	BH9 July 2024	BH9 Oct 2024	BH9 Jan 2025	BH9 Apr 2025
Conductivity	μS/cm	350 ¹	525	-	460	1	471	-	480	1	633	-	600	-
Nitrate	ppm	0.7 1	2.5	-	0.67	-	2.8	-	2.3	1	11.0	-	10	-
рН	pH units	6.5-7.5 ¹	7.2	6.9	6.7	1	6.9	6.7	6.6	-	7.0	6.9	6.9	7.3

	Unit of	Critical	BH10	BH10	BH10	BH10	BH15S	BH15S	BH15S	BH15S	BH15D	BH15D	BH15D	BH15D
Test Identity	measure		July	Oct	Jan	Apr	July	Oct	Jan	Apr	July	Oct	Jan	Apr
			2024	2024	2025	2025	2024	2024	2025	2025	2024	2024	2025	2025
Conductivity	μS/cm	350 ¹	641	-	620	-	365	-	360	-	309	-	300	-
Nitrate	ppm	0.7 1	12.0	-	12	-	6.6	-	6.5	-	5.9	-	6.1	-
рН	pH units	6.5-7.5 ¹	7.5	7.4	7.3	-	7.4	7.2	7.1	-	6.8	6.7	6.7	6.6

^{1.} ANZG (2018) Australian & New Zealand Guidelines for Fresh & Marine Water Quality.

Bore Reference	Location
BH8S	Shallow bore to monitor groundwater quality downstream of irrigated, By-product and Sludge applied areas
BH8D	Deep bore to monitor groundwater quality downstream of irrigated, Lime Mud, Power Boiler Ash and Sludge applied areas
ВН9	Deep bore to monitor groundwater quality downstream of the irrigated and By- product applied areas
BH10D	Deep bore to monitor groundwater quality off site and downstream of irrigated and By-product applied areas
BH15S	Shallow bore to monitor groundwater quality downstream of irrigated and By- product applied areas
BH15D	Deep bore to monitor groundwater quality downstream of irrigated and By-product applied areas

Test Identity	Unit of measure	Critical Range	BH13 July 2024	BH13 Oct 2024	BH13 Jan 2025	BH13 Apr 2025	BH14 July 2024	BH14 Oct 2024	BH14 Jan 2025	BH14 Apr 2025	BH16 July 2024	BH16 Oct 2024	BH16 Jan 2025	BH16 Apr 2025
Conductivity	μS/cm	350 ¹	852	-	920	-	740	-	680	-	733	-	1200	-
Nitrate	ppm	0.7 1	<0.1	-	0.061	-	0.6	-	0.41	-	4.2	-	5.7	-
рH	pH units	6.5-7.5 ¹	7.4	7.4	7.5	-	6.8	6.9	7.0	-	7.7	7.7	7.4	7.8

	Unit of	Critical	BH17	BH17	BH17	BH17
Test Identity	Unit of measure	Range	July	Oct	Jan	Apr
	mousure	rtunge	2024	2024	2025	2025
Conductivity	μS/cm	350 ¹	1180	-	1200	-
Nitrate	ppm	0.7 1	0.2	-	0.030	-
рН	pH units	6.5-7.5 ¹	7.7	7.6	7.7	7.8

^{1.} ANZG (2018) Australian & New Zealand Guidelines for Fresh & Marine Water Quality.

Bore Reference Location

BH13 Shallow bore to monitor seepage from the Winter Storage Dam
BH14 Shallow bore to monitor seepage from the Winter Storage
BH16 and BH17 Shallow bores to monitor seepage from the Winter Storage Dam

Attachment B: Surface Water 2024-2025

Surface water monitoring

		SW1	SW1	SW1	SW1	SW1	SW1	SW1	SW1	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2
Test Identity	Critical Range	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
		8/10/2024	1/11/2024	2/12/2024	6/1/2025	13/2/2025	7/3/2025	2/4/2025	5/5/2025	8/10/2025	1/11/2025	2/12/2024	6/1/2025	13/2/2025	7/3/2025	2/4/2025	5/5/2025
pH (pH units)	6.5-7.5 1	7.6	7.6	7.1	6.9	7.1	7.3	7.6	7.3	7.5	7.3	7.1	7.2	7.3	7.3	7.4	7.2
Total dissolved solids (mg/L)	N/A	160	180	220	210	200	230	340	330	220	280	230	230	250	250	290	290
BOD (mg/L)	<15 1	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Total suspended solids (mg/L)	<45 ²	28	11	7	10	220	42	92	6	<5	46	20	18	9	5	<5	50
Zinc (mg/L)	<0.008 1	<0.005	<0.005	<0.005	<0.005	<0.005	0.009	<5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<5	<0.005
Phosphorus (total) (mg/L)	<0.02 1	0.07	<0.02	0.11	0.08	0.52	0.12	0.49	0.64	<0.02	0.08	0.20	0.25	0.06	0.04	0.13	0.14
Nitrogen (total) (mg/L)	<0.25 1	0.45	0.28	0.31	0.32	2.1	0.81	1.30	4.50	0.48	0.84	1.2	1.2	0.70	0.44	1.10	1.00
Manganese (mg/L)	<1.9 1	0.023	<0.001	0.036	0.360	0.450	0.130	<0.001	0.150	0.099	<0.001	0.007	0.063	0.210	0.001	0.055	0.002
Conductivity (µS/cr	<350 ¹	290	360	340	350	410	430	540	570	400	430	300	370	490	450	450	490
Faecal Coliforms (f	<150 ¹	580	250	1200	10000000	2800	910	980	390	270	70	240	130	52	18	70	53
Oil & Grease (mg/L	<5 ²	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

		SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4
Test Identity	Critical Range	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
		8/10/2024	1/11/2024	2/12/2024	6/1/2025	13/2/2025	7/3/2025	2/4/2025	5/5/2025	8/10/2025	1/11/2025	2/12/2024	6/1/2025	13/2/2025	7/3/2025	2/4/2025	5/5/2025
pH (pH units)	6.5-7.5 1	7.6	7.4	7.3	7.3	7.6	7.4	7.5	7.6	7.6	7.4	7.3	7.0	7.0	7.1	7.1	7.3
Total dissolved solids (mg/L)	N/A	240	230	280	300	300	320	420	400	340	510	380	370	430	510	660	610
BOD (mg/L)	<15 1	<5	<5	<5	<5	<5	<5	<5	<5	<5	10	6	21	22	16	39	<5
Total suspended solids (mg/L)	<45 ²	14	11	9	14	12	14	12	<5	94	54	85	180	65	100	1700	9
Zinc (mg/L)	<0.008 1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<5	<0.005	0.007	<0.005	<0.005	<0.005	<0.005	<0.005	<5	0.006
Phosphorus (total) (mg/L)	<0.02 1	0.02	0.03	0.16	0.07	0.07	0.04	0.03	<0.02	0.25	0.34	0.37	0.75	0.80	1.3	3.5	0.24
Nitrogen (total) (mg/L)	<0.25 1	0.54	0.61	1.1	0.57	0.82	0.73	0.73	0.48	2.50	3.6	3.4	5.4	5.1	8.3	21.0	7.1
Manganese (mg/L)	<1.9 1	0.120	0.008	0.004	<0.001	0.002	<0.001	<0.001	0.001	1.70	5.50	0.014	2.100	2.900	4.300	5.800	0.870
Conductivity (µS/cr	<350 ¹	400	510	420	490	610	550	680	690	540	850	580	540	760	830	1100	1100
Faecal Coliforms (f	<150 ¹	44	<1	20	170	67	36	41	22	870	230	1100	70	4500	730	>2419.6	8
Oil & Grease (mg/L	<5 ²	<5	<5	<5	<5	<5	<5	7	<5	<5	<5	<5	<5	<5	<5	<5	<5

		SW5	SW5	SW5	SW5	SW5	SW5	SW5	SW5	
Test Identity	Critical Range	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Ī
		8/10/2024	1/11/2024	2/12/2024	6/1/2025	13/2/2025	7/3/2025	2/4/2025	5/5/2025	Ī
pH (pH units)	6.5-7.5 ¹	7.8	7.7	7.3	7.2	7.5	7.3	7.5	7.5	1. ANZ
Total dissolved solids (mg/L)	N/A	230	220	220	220	270	240	270	290	2. Visy
BOD (mg/L)	<15 1	<5	<5	<5	<5	<5	<5	<5	<5	
Total suspended solids (mg/L)	<45 ²	<5	16	10	17	9	9	14	<5	Samplin
Zinc (mg/L)	<0.008 1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<5	<0.005	SW1
Phosphorus (total) (mg/L)	<0.02 1	0.02	0.04	0.10	0.29	0.07	0.06	0.06	0.04	SW2
Nitrogen (total) (mg/L)	<0.25 1	0.50	0.49	1.1	1.3	0.50	0.43	0.56	0.30	SW3
Manganese (mg/L)	<1.9 1	0.120	<0.001	0.008	0.014	0.380	0.200	0.160	0.140	SW4
Conductivity (µS/cr	<350 ¹	390	400	300	370	480	420	420	490	SW5
Faecal Coliforms (f	<150 ¹	650	18	140	130	150	78	46	30	
Oil & Grease (mg/L	<5 ²	<5	<5	<5	<5	<5	24	<5	<5	

1. ANZG (2018) Australian & New Zealand Guidelines for Fresh & Marine Water Quality.

Sampling Sites Location

SW1 Sandy Creek upstream of Winter Storage Dam

SW2 Sandy Creek downstream of Winter Storage Dam

Deep Creek

SW4 Upstream of Winter Storage Dam SW5

Downstream of Winter Storage Dam

^{2.} Visy P & P (2001) NSW EPA Licence Variation Appendix 20232.

Attachment C: Point 10 (Wastewater) 2024-2025

Monitoring Point 10 - DECANT

Grab sample

Nitrogen (total) Oil & Grease pH Phosphorus (total) Total Suspended Solids Total Dissolved Solids Sodium Adsorption Ratio	Unit of	Critical					Wastew	ater Monitoring	2024-25					
Pollutarit	measure	Range	1/07/2024	2/08/2024	3/09/2024	8/10/2024	1/11/2024	2/12/2024	8/01/2025	13/02/2025	7/03/2025	3/04/2025	5/05/2025	4/06/2025
BOD	mg/L	<40 ¹	12	<5	10	<5	6	<5	<5	<5	<5	6	<5	<5
Nitrogen (total)	mg/L	<20 ¹	5	2.2	4.3	4.3	2.2	3.6	5.4	5.5	5.8	4.9	4.7	3.2
Oil & Grease	mg/L	<5 ¹	1	<5	<5	<5	<5	<5	<5	<5	<5	5	<5	<5
pH	pН	5.5-9.5 ¹	7.0	6.6	6.8	6.8	6.6	6.9	6.9	6.9	6.9	6.6	6.9	6.8
Phosphorus (total)	mg/L	<5 ¹	0.47	0.74	0.70	0.61	0.93	0.82	1.6	1.6	1.2	0.90	0.96	0.82
Total Suspended Solids	mg/L	<45 ¹	25	9	31	8	15	7	13	11	16	18	24	16
Total Dissolved Solids	mg/L	<1000	161	170	180	160	170	240	190	180	160	160	200	200
Sodium Adsorption Ratio	SAR	<4.5 ²	4	4.1	4.2	3.6	4.4	4.2	3.3	3.0	2.7	2.6	3.9	4.1
Zinc	mg/L	no data	0.045	0.008	0.014	0.024	0.014	0.046	0.020	0.035	0.020	0.016	0.019	0.030

^{1.} Visy P & P (2016) NSW EPA Licence 10232. Chatswood, NSW.

^{2.} DEC (2004) NSW EPA Environmental Guidelines. Use of Effluent by Irrigation. Chatswood, NSW.

Attachment D: SMS October 2024 and April 2025

	Deschartet.			Soil Monito	oring Sites (SMS) - 3 (October 2024		
Parameter	Desirable _	SMS1	SMS2	SMS3	SMS4	SMS5	SMS6	SMS7
	Range	0-10cm	0-10cm	0-10cm	0-10cm	0-10cm	0-10cm	0-10cm
Nitrate Nitrogen (ppm)	>30 ³	5.6	0.52	4	3.1	2.2	4.2	0.94
Phosphorus - Colwell (ppm)	>30 ³	68	19	30	8	46	100	18
Phosphorus - (available) Bray (ppm)	>30 ³	-	-	-	-	-	-	-
P Buffer Index (PBI)	> 30 ⁴	240	120	200	160	210	140	230
Available K (ppm)	> 225	-	-	-	-	-	-	-
Sulphate Sulphur (KCl40) (ppm)	>10 ¹	_	_	-	-	-	_	_
DTPA Zinc (ppm)	1 - 5 ⁶	_	_	_	_	_	_	_
DTPA Copper (ppm)	0.2 - 5 ⁶	-	_	-	-	-	-	-
DTPA Iron (ppm)	no data		_	_	-	_	_	_
DTPA Manganese (ppm)	1 - 5 ⁶					-	-	-
Boron (ppm)	>0.3 ²	-	-		_	-	-	_
EC (dS/m)	<0.5 ¹	0.050	0.038	0.063	0.036	0.058	0.062	0.014
ECe (dS/m)			1.777		1			
` '	<2 ¹	3.4	1.4	2.6	2.3	3.6	2.7	2.6
Organic C (% C)		<u> </u>				3.0		
Chloride (ppm)	< 125 ⁴	6.2	6.7	-	-		7.3	-
pH (H2O)	6 - 8 ¹		• • • • • • • • • • • • • • • • • • • •	6.5	6.4	7.0		5.9
pH (CaCl2)	5.5 - 7 ¹	5.7	5.9	5.7	5.4	6.2	6.6	4.7
CEC (meq/100gm)	5 - 15 ¹	16	8.4	9.9	9.6	16	13	4.6
Exchangeable Aluminium (ppm)	no data	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Exchangeable Potassium (ppm)	no data	100	110	41	58	73	120	77
Exchangeable Sodium (ppm)	no data	80	66	98	72	91	43	9
Exchangeable Magnesium (ppm)	no data	240	100	170	170	160	110	63
Exchangeable Calcium (ppm)	no data	2600	1400	1600	1600	2900	2300	780
Aluminium (meq/100gm)*	<1 ²	-	-	-	-	-	-	-
Calcium (meq/100gm)	n/a	13	7	8	7.8	15	11	3.9
Magnesium (meq/100gm)	n/a	1.9	0.85	1.4	1.4	1.3	0.88	0.52
Sodium (meq/100gm)	<4.3 ²	0.35	0.29	0.43	0.31	0.4	0.19	0.04
Potassium (meq/100gm)	no data	0.27	0.28	0.11	0.15	0.19	0.31	0.2
Ca:Mg Ratio	>2 ¹	-	-	-	-	-	-	-
K:Mg Ratio	no data	-	-	-	-	-	-	-
Aluminium %	<5% ¹	-	-	-	-	-	-	-
Calcium %	65-80% ¹	83.9	83.1	80.8	81.1	88.5	89.3	83.8
Magnesium %	10-15% ¹	12.2	10.1	13.8	14.1	7.9	6.9	11.1
Sodium %	<5% ¹	2.9	4.2	5.7	4.2	3.2	1.8	1
Potassium %	1-5% ¹	1.7	3.4	1.1	1.6	1.1	2.4	4.2
EAT (H2O Class)	no data	7	7	7	7	7	7	7
EAT (Low SAR Class)	no data	-	-	-	-	-	-	-
EAT (High SAR Class)	no data	-	-	-	-	-	-	-
Aluminium total (mg/kg)	no data	4300	1900	2400	4200	2700	4200	3100
Arsenic (mg/kg)	<20 ⁷	-	-	-	-	-	-	-
Cadmium (mg/kg)	<17	-	-	-	-	-	-	-
Chromium (mg/kg)	<100 ⁷	-	-	-	-	-	-	-
Copper (mg/kg)	<100 ⁷	-	-	-	-	-	-	-
Lead (mg/kg)	<150 ⁷	_	_	_	-	-	_	_
Mercury (mg/kg)	<17	_	_	_	-	_	_	_
Nickel (mg/kg)	<60 ⁷	_	_	_	_	-	_	_
Zinc (mg/kg)	<200 ⁷			_	_		-	_
Total Kjeldahl Nitrogen (mg/kg)	500-3000 ⁴	2100	1200	2300	2200	2600	2100	1900
Total Phosphorus (mg/kg)	>30 ⁴	410	190	340	330	500	680	290
rotai i nospilotus (my/ky)	>ა∪	410	190	340	330	300	000	290

¹ NSW Agriculture (1998) Interpreting Soil Results: Rules of Thumb. NSW Agriculture, Wagga Wagga
2. Soils: their properties and management: a soil conservation handbook for NSW. (1991) Ed. Charman & Murphy. Oxford University Press.
3. Gunter S. (1997) Understanding Soil Tests. NSW Agriculture Publication, Tamworth.
4. Peverill, Sparrow & Reuter (1999) Soil Analysis: An Interpretation Manual. CSIRO Publishing, Collingwood.

Incitec Fertilisers et al. Technical Bulletin.
 Sail Description Book (1997), Ken Wetherby, Cleve SA
 7, NSW EPA (1997) Environmental Guidelines: Use & Disposal of Biosolids Products.
 NSW EPA Publication, Chatswood.MASCC Agricultural Land

	Deciroble			Soil Moni	toring Sites (SMS) - 4	April 2025		
Parameter	Desirable _	SMS1	SMS2	SMS3	SMS4	SMS5	SMS6	SMS7
	Range	0-10cm	0-10cm	0-10cm	0-10cm	0-10cm	0-10cm	0-10cm
Nitrate Nitrogen (ppm)	>30 ³	7	7.3	10	5.3	35	10	6.2
Phosphorus - Colwell (ppm)	>30 ³	7	70	16	5	21	18	14
Phosphorus - (available) Bray (ppm)	>30 ³	-	-	-	-	-	-	-
P Buffer Index (PBI)	> 30 ⁴	500	200	450	400	410	370	370
Available K (ppm)	> 225	-	-	-	-	-	-	-
Sulphate Sulphur (KCl40) (ppm)	>10 ¹	-	-	-	-	-	-	-
DTPA Zinc (ppm)	1 - 5 ⁶	-	-	-	-	-	-	-
DTPA Copper (ppm)	0.2 - 5 ⁶	-	-	-	-	-	-	-
DTPA Iron (ppm)	no data	-	-	-	-	-	-	-
DTPA Manganese (ppm)	1 - 5 ⁶	-	-	-	-	-	-	-
Boron (ppm)	>0.32	-	-	-	-	-	-	-
EC (dS/m)	< 0.5 ¹	0.078	0.12	0.12	0.054	0.11	0.071	0.024
ECe (dS/m)	<2 ¹	-	-	-	-	-	-	-
Organic C (% C)	2 ¹	1.2	2	2	1.1	1.5	1.7	1.5
Chloride (ppm)	< 125 ⁴	-	-	-	-	-	-	-
pH (H2O)	6 - 8 ¹	6.5	8.1	6.9	6.9	6.1	6.5	5.9
pH (CaCl2)	5.5 - 7 ¹	5.8	7.4	5.4	5.5	5.6	5.6	4.9
CEC (meg/100gm)	5 - 15 ¹	6.7	21	8.2	6	6.9	8.7	3.9
Exchangeable Aluminium (ppm)	no data	-	-	-	-	-	-	-
Exchangeable Potassium (ppm)	no data	62.6	238.5	54.7	62.6	78.2	125.1	78.2
Exchangeable Sodium (ppm)	no data	188.5	124.1	193.1	87.4	25.3	119.5	9.2
Exchangeable Magnesium (ppm)	no data	80.2	116.7	114.3	133.7	12.2	170.2	58.3
Exchangeable Calcium (ppm)	no data	1022.0	3807.6	1262.5	921.8	320.6	1302.6	641.3
Aluminium (meq/100gm)*	<1 ²	-	-	-	-	-	-	-
Calcium (meg/100gm)	n/a	5.1	19	6.3	4.4	5.9	6.5	3.2
Magnesium (meg/100gm)	n/a	0.66	0.96	0.94	0.88	0.53	1.4	0.48
Sodium (meg/100gm)	<4.3 ²	0.82	0.54	0.84	0.51	0.26	0.52	0.04
Potassium (meg/100gm)	no data	0.16	0.61	0.14	0.16	0.2	0.32	0.2
Ca:Mg Ratio	>21	-	-	-	-	-	-	-
K:Mg Ratio	no data	_	_	-	-	-	_	_
Aluminium %	<5% ¹	-	_	_	-	_	_	_
Calcium %	65-80% ¹	75.5	89.9	76.6	73.9	85.6	74.6	81.7
Magnesium %	10-15% ¹	9.9	4.6	11.4	14.8	7.7	15.6	12.3
Sodium %	<5% ¹	12.3	2.6	10.2	8.6	3.8	6	0.9
Potassium %	1-5%	2.4	2.9	1.7	2.7	2.9	3.7	5.1
EAT (H2O Class)	no data	7	8	8	7	8	7	7
EAT (Low SAR Class)	no data		-	-	-	-	_	-
EAT (High SAR Class)	no data	-	_	_	_	_	_	_
Aluminium total (mg/kg)	no data	3600	4100	2000	3200	6900	10000	2200
Arsenic (mg/kg)	<20 ⁷	-	-	-	-	-	-	-
Cadmium (mg/kg)	<1 ⁷	-	_	_	-	_	_	_
Chromium (mg/kg)	<100 ⁷	-	_	_	_	_	_	_
Copper (mg/kg)	<100 ⁷	-	_	-	_	-	_	_
Lead (mg/kg)	<150 ⁷		-	-	_		-	_
Mercury (mg/kg)	<1 ⁷		-	-	-	-	-	_
Nickel (mg/kg)	<60 ⁷	<u> </u>	-	-	-	-	-	
Zinc (mg/kg)	<60 <200 ⁷		-	-	-	-	-	-
Total Kjeldahl Nitrogen (mg/kg)	500-3000 ⁴	930	1800	1400	1400	1100	1500	890
Total Rjeldani Nilrogen (mg/kg) Total Phosphorus (mg/kg)	>30 ⁴	180	510	230	230	190	230	180
TOTAL PROSPROFUS (Mg/kg) 1. NSW Agriculture (1998) Interpreting Soil Results: Rules of 3		100	310	∠30		190	230	100

NSW Agriculture (1998) Interpreting Soil Results: Rules of Thumb. NSW Agriculture, Wagga Wagga
 Soils: their properties and management: a soil conservation handbook for NSW. (1991) Ed. Charman & Murphy. Oxford University Press.
 Gunter S (1997) Understanding Soil Tests. NSW Agriculture Publication, Tamworth.
 Peverill, Sparrow & Reuter (1999) Soil Analysis: An Interpretation Manual. CSIRO Publishing, Collingwood.

^{5.} Incitec Fertilisers et al. Technical Bulletin.
6. Soil Description Book (1997), Ken Wetherby, Cleve SA
7. NSW EPA (1997) Environmental Guidelines: Use & Disposal of Biosolids Products.
NSW EPA Publication, Chatswood.

	D. ducht.			Subsoil Soil Mo	onitoring Sites (SMS)	- 3 October 2024		
Parameter	Desirable _	SMS1	SMS2	SMS3	I SMS4	SMS5	SMS6	SMS7
1 414111000	Range	50-60cm	50-60cm	50-60cm	50-60cm	50-60cm	50-60cm	50-60cm
Nitrate Nitrogen (ppm)	>30 ³	0.68	0.46	0.82	0.45	0.77	0.57	0.26
Phosphorus - Colwell (ppm)	>30 ³	2	1	2	4	5	7	3
Phosphorus - (available) Bray (ppm)	>30 ³	-	-	-	-	-	-	-
P Buffer Index (PBI)	> 30 ⁴	400	310	490	770	740	820	840
Available K (ppm)	> 225	-	-	-	-	-	-	-
Sulphate Sulphur (KCl40) (ppm)	>10 ¹	-	-	-	-	-	-	-
DTPA Zinc (ppm)	1 - 5 ⁶	-	_	_	-	_	_	_
DTPA Copper (ppm)	0.2 - 5 ⁶	-	-	-	-	-	-	-
DTPA Iron (ppm)	no data	-	-	-	-	-	-	-
DTPA Manganese (ppm)	1 - 5 ⁶	-	-	-	-	-	_	_
Boron (ppm)	>0.3 ²	-	-	-	_	_	_	_
EC (dS/m)	<0.5 ¹	0.042	0.064	0.069	0.055	0.120	0.100	0.030
ECe (dS/m)	<2 ¹	•	-			•		
Organic C (% C)	21	0.31	0.22	0.43	0.45	0.57	0.32	0.73
Chloride (ppm)	< 125 ⁴	-	-	-	-	-	-	-
pH (H2O)	6 - 8 ¹	7	5.9	6.5	6.8	5.9	5.6	5.4
pH (CaCl2)	5.5 - 7 ¹	5.9	4.5	5.6	6.1	5.1	5.1	4.5
CEC (meg/100gm)	5 - 15 ¹	12	8.5	10	13	10	12	10
Exchangeable Aluminium (ppm)	no data	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Exchangeable Potassium (ppm)	no data	56.0	150.0	41.0	67.0	63.0	500.0	48.0
Exchangeable Sodium (ppm)	no data	170.0	260.0	240.0	130.0	290.0	100.0	36.0
Exchangeable Magnesium (ppm)	no data	540.0	480.0	420.0	430.0	390.0	360.0	460.0
Exchangeable Calcium (ppm)	no data	1300.0	600.0	1200.0	1700.0	1200.0	1500.0	1200.0
Aluminium (meg/100gm)	<1 ²	-	-	1200.0	-	1200.0	-	1200.0
Calcium (meg/100gm)	n/a	6.6	3	5.8	8.4	5.8	7.6	6
Magnesium (meg/100gm)	n/a	4.4	3.9	3.5	3.5	3.2	3	3.8
Sodium (meg/100gm)	<4.3 ²	0.73	1.1	1.1	0.55	1.3	0.44	0.16
Potassium (meg/100gm)	no data	0.14	0.39	0.1	0.17	0.16	1.3	0.12
Ca:Mg Ratio	>21	-	-	-	-	-	-	-
K:Mg Ratio	no data	_	_	-	-	_	_	_
Aluminium %	<5% ¹	-	_	-	_	-	_	
Calcium %	65-80% ¹	55.6	35.3	55.6	66.3	55.7	61.7	59.7
Magnesium %	10-15% ¹	37.1	46.6	33.3	28	30.6	24.3	37.6
Sodium %	<5% ¹	7.4	15.8	12.6	5.4	14.8	4.5	2
Potassium %	1-5%	1.2	4.6	1	1.4	1.6	10.5	1.2
EAT (H2O Class)	no data	-	-	-	-	-	-	-
EAT (Low SAR Class)	no data	-	-	-	-	-	-	-
EAT (High SAR Class)	no data		_	_			_	
Aluminium total (mg/kg)	no data	24000	6800	16000	17000	18000	15000	18000
Arsenic (mg/kg)	<20 ⁷	-	-	10000	-	-	13000	-
Cadmium (mg/kg)	<1 ⁷		-	-	-	-	-	
Chromium (mg/kg)	<100 ⁷	-	-	-	-	-	-	-
Copper (mg/kg)	<100 ⁷	-	-	-	-	-	-	
Lead (mg/kg)	<100 <150 ⁷			-	 	-	-	-
Mercury (mg/kg)	<150 <1 ⁷							
			-	-	-	-	-	
Nickel (mg/kg) Zinc (mg/kg)	<60 ⁷ <200 ⁷	-	-	-	-		-	
							370	
Total Kjeldahl Nitrogen (mg/kg)	500-3000 ⁴	310	180	330	540	610		630
Total Phosphorus (mg/kg)	>30 ⁴	61	<40	68	190	170	150	150

^{1.} NSW Agriculture (1998) Interpreting Soil Results: Rules of Thumb. NSW Agriculture, Wagga Wagga
2. Soils: their properties and management: a soil conservation handbook for NSW. (1991) Ed. Charman & Murphy. Oxford University Press.
3. Gunter S. (1997) Understanding Soil Tests. NSW Agriculture Publication, Tamworth.
4. Peverill, Sparrow & Reuter (1999) Soil Analysis: An Interpretation Manual. CSIRO Publishing, Collingwood.

Incitec Fertilisers et al. Technical Bulletin.
 Sail Description Book (1997), Ken Wetherby, Cleve SA
 7, NSW EPA (1997) Environmental Guidelines: Use & Disposal of Biosolids Products.
 NSW EPA Publication, Chatswood.MASCC Agricultural Land

	Daainahla			Subsoil Soil I	Monitoring Sites (SMS	S) - 4 April 2025		
Parameter	Desirable _	SMS1	SMS2	SMS3	SMS4	SMS5	SMS6	SMS7
	Range	50-60cm	50-60cm	50-60cm	50-60cm	50-60cm	50-60cm	50-60cm
Nitrate Nitrogen (ppm)	>30 ³	0.84	1.1	1.4	2.6	3.3	2	2.4
Phosphorus - Colwell (ppm)	>30 ³	11	2	1	4	4	3	5
Phosphorus - (available) Bray (ppm)	>30 ³	-	-	-	-	-	-	-
P Buffer Index (PBI)	> 304	870	230	590	770	610	760	850
Available K (ppm)	> 225	-	-	-	-	-	-	-
Sulphate Sulphur (KCl40) (ppm)	>10 ¹	-	-	-	-	-	-	-
DTPA Zinc (ppm)	1 - 5 ⁶	-	-	-	-	-	-	-
DTPA Copper (ppm)	0.2 - 5 ⁶	-	-	-	-	-	-	-
DTPA Iron (ppm)	no data	-	-	-	-	-	-	-
DTPA Manganese (ppm)	1 - 5 ⁶	-	-	-	-	-	-	-
Boron (ppm)	>0.3 ²	-	-	-	-	-	-	-
EC (dS/m)	<0.5 ¹	0.13	0.045	0.048	0.058	0.047	0.099	0.037
ECe (dS/m)	<2 ¹	-	-	-	-	-	-	-
Organic C (% C)	21	0.24	0.15	0.17	0.54	0.56	0.43	0.65
Chloride (ppm)	< 125 ⁴	-	-	-	-	-	-	-
pH (H2O)	6 - 8 ¹	6.3	7.8	6.8	6.3	6.9	5.6	4.9
pH (CaCl2)	5.5 - 7 ¹	5.6	7	5.4	5.1	6.1	4.4	4.1
CEC (meg/100gm)	5 - 15 ¹	13	5.3	9.9	9.1	8	16	5
Exchangeable Aluminium (ppm)	no data	-	-	-	-	-	-	-
Exchangeable Potassium (ppm)	no data	121.2	101.7	78.2	121.2	82.1	121.2	70.4
Exchangeable Sodium (ppm)	no data	413.8	41.4	229.9	87.4	25.3	390.8	20.7
Exchangeable Magnesium (ppm)	no data	777.9	88.7	486.2	133.7	12.2	960.2	121.6
Exchangeable Calcium (ppm)	no data	841.7	821.6	921.8	921.8	320.6	1142.3	721.4
Aluminium (meq/100gm)	<1 ²	-	-	-	-	-	-	-
Calcium (meg/100gm)	n/a	4.2	4.1	4.6	4.7	6.7	5.7	3.6
Magnesium (meq/100gm)	n/a	6.4	0.73	4	2.9	0.67	7.9	1
Sodium (meg/100gm)	<4.3 ²	1.8	0.18	1	1.1	0.36	1.7	0.09
Potassium (meg/100gm)	no data	0.31	0.26	0.2	0.31	0.21	0.31	0.18
Ca:Mg Ratio	>21	-	-	-	-	-	-	-
K:Mg Ratio	no data	_	_	_	_	_	_	_
Aluminium %	<5% ¹	-	-	-	-	_	_	
Calcium %	65-80% ¹	33	77.9	46.9	52.1	84.4	36.8	73.3
Magnesium %	10-15% ¹	50.3	13.9	40.6	32.3	8.4	50.5	21.1
Sodium %	<5% ¹	14.2	3.4	10.4	12.2	4.6	10.7	1.9
Potassium %	1-5% ¹	2.5	4.9	2	3.4	2.7	2	3.7
EAT (H2O Class)	no data	6	5	5	5	5	5	5
EAT (N2O Class)	no data	-	-	-	-	-	-	-
EAT (High SAR Class)	no data	<u>-</u>			_	_	_	
Aluminium total (mg/kg)	no data	11000	12000	7600	17000	11000	16000	14000
Arsenic (mg/kg)	<20 ⁷	-	12000	7000	-	-	10000	14000
Cadmium (mg/kg)	<20 <1 ⁷	-	-		-	-	-	-
Chromium (mg/kg)	<100 ⁷		-	-	-	-	-	-
Copper (mg/kg)	<100 ⁷		-	-	-	-	-	-
Lead (mg/kg)	<100 <150 ⁷	-	-	-	-	-	-	-
\ 0 07								-
Mercury (mg/kg)	<1 ⁷		-	-	-	-	-	
Nickel (mg/kg)	<60 ⁷	-	-	-	-	-	-	-
Zinc (mg/kg)	<200 ⁷	- 250	-	- 220	-	-	- 470	-
Total Kjeldahl Nitrogen (mg/kg)	500-3000 ⁴	350	160	330	580	500	470	580
Total Phosphorus (mg/kg)	>30 ⁴	210	40	81	190	130	90	140

^{1.} NSW Agriculture (1998) Interpreting Soil Results: Rules of Thumb. NSW Agriculture, Wagga Wagga
2. Soils: their properties and management: a soil conservation handbook for NSW. (1991) Ed. Charman & Murphy. Oxford University Press.
3. Gunter S. (1997) Understanding Soil Tests. NSW Agriculture Publication, Tamworth.
4. Peverill, Sparrow & Reuter (1999) Soil Analysis: An Interpretation Manual. CSIRO Publishing, Collingwood.

Incitec Fertilisers et al. Technical Bulletin.
 Sail Description Book (1997), Ken Wetherby, Cleve SA
 7, NSW EPA (1997) Environmental Guidelines: Use & Disposal of Biosolids Products.
 NSW EPA Publication, Chatswood.MASCC Agricultural Land

Attachment E: Nutrient Budget 2024-2025

WINTER 2024	CROP (VARIETY)	DATE SOWN	SOIL P STATUS (kg/ha)	SOIL N STATUS (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
('121	RYE & CLOVER	n/a	46.2	8.4	13.2	42.2	1	180	45	200	15.4	30.6
CP2	LUCERNE & CLOVER	n/a	16.0	12.0	52.8	42.2	1	180	45	200	24.8	34.2
(,D,3	RYE & CLOVER	n/a	5.0	6.4	52.8	42.2	1	180	45	200	13.8	28.6
I (:P4	LUCERNE & CLOVER	n/a	21.0	42.0	52.8	42.2	1	180	45	200	29.8	64.2
CP5	LUCERNE & CLOVER	n/a	18.0	12.0	52.8	42.2	1	180	45	200	26.8	34.2
SHT	MILLET	n/a	14.0	7.4	52.8	211	1	65	50	250	17.8	33.4

SUMMER 2024/25	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
L CP1	RYE/CLOVER/ MILLET	n/a	15.4	30.6	39.6	42.4	1	180	50	250	6.0	3.0
CP2	LUCERNE & CLOVER	n/a	24.8	34.2	26.4	42.4	1	180	45	200	7.2	56.6
CP3	RYE/CLOVER/ MILLET	n/a	13.8	28.6	39.6	42.4	1	180	50	250	4.4	1.0
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LUCERNE & CLOVER	n/a	29.8	64.2	26.4	42.4	1	180	45	200	12.2	86.6
CP5	LUCERNE & CLOVER	n/a	26.8	34.2	26.4	42.4	1	180	45	200	9.2	56.6
SHT	MILLET	n/a	17.8	33.4	52.8	211	1	45	50	250	21.6	39.4

CP1 RYF & CLOVER tha 6 3 52.8 42.4 1 180 45 200 14.8 25.4	WINTER 2025	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
	CP1	RYE & CLOVER	tba	6	3	52.8	42.4	1	180	45	200	14.8	25.4
CP2 LUCERNE & RYE & LOVER tba 7.2 56.6 39.6 0 1 180 45 200 2.8 36.6	CP2		tba	7.2	56.6	39.6	0	1	180	45	200	2.8	36.6
CP3 RYE & CLOVER tba 4.4 1 52.8 42.4 1 180 45 200 13.2 23.4			tba	4.4	1	52.8	42.4	1	180	45	200	13.2	23.4
CP4 LIUCERNE & RYE & tba 12.2 86.6 39.6 0 1 180 45 200 7.8 66.6 COVER	CP4	CLOVER	tba	12.2	86.6	39.6	0	1	180	45	200	7.8	66.6
CP5 LIUCERNE & RYE & tba 9.2 56.6 69.6 0 1 180 45 200 34.8 36.6 clover			tba	9.2	56.6	69.6	0	1	180	45	200	34.8	36.6
SHT OATS & RYE tba 21.6 39.4 52.8 126.6 1 45 45 200 30.4 11.0	SHT	OATS & RYE	tba	21.6	39.4	52.8	126.6	1	45	45	200	30.4	11.0

SUMMER 2025/26	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
	SORGHUM / RYE / CLOVER	tba	14.8	25.4	52.8	84.8	1	180	50	250	18.6	40.2
	SORGHUM / LUCERNE / RYE /	tba	2.8	36.6	52.8	84.8	1	180	50	250	6.6	51.4
CP3	SORGHUM / RYE / CLOVER	tba	13.2	23.4	52.8	84.8	1	180	50	250	17.0	38.2
	SORGHUM / LUCERNE / RYE /	tba	7.8	66.6	52.8	84.8	1	180	50	250	11.6	81.4
	SORGHUM / RYE / CLOVER	tba	34.8	36.6	26.4	84.8	1	180	50	250	12.2	51.4
	SORGHUM / OATS / RYE	tba	30.4	11	52.8	211	1	45	50	250	34.2	17.0

WINTER 2026	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	RYE & WHITE CLOVER	tba	18.6	40.2	52.8	42.2	1	180	45	200	27.4	62.4
	LUCERNE / CLOVER / RYE	tba	6.6	51.4	52.8	0	1	180	45	200	15.4	31.4
CP3	RYE & WHITE CLOVER	tba	17	38.2	52.8	42.2	1	180	45	200	25.8	60.4
CP4	LUCERNE / CLOVER / RYE	tba	11.6	81.4	52.8	0	1	180	45	200	20.4	61.4
	LUCERNE / CLOVER / RYE	tba	12.2	51.4	52.8	0	1	180	45	200	21.0	31.4
SHT	OATS	tba	34.2	17	52.8	84.4	1	45	45	100	43.0	46.4

SUMMER 2026/27	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
	LUCERNE & WHITE CLOVER	tba	27.4	62.4	52.8	42.2	1	180	45	200	36.2	84.6
	LUCERNE / CLOVER / MILLET	tba	15.4	31.4	52.8	42.2	1	180	50	250	19.2	3.6
CP3	LUCERNE & WHITE CLOVER	tba	25.8	60.4	52.8	42.2	1	180	45	200	34.6	82.6
	LUCERNE / CLOVER / MILLET	tba	20.4	61.4	52.8	42.2	1	180	50	250	24.2	33.6
CP5	LUCERNE / CLOVER / MILLET	tba	21	31.4	26.4	42.2	1	180	50	250	0.0	3.6
SHT	BRASSICA	tba	43	46.4	52.8	42.2	1	45	45	200	51.8	0.0

WINTER 2027	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	36.2	84.6	22	0	3	193	25	200	36.2	77.6
CP2	LUCERNE	tba	19.2	3.6	22	0	3	193	25	200	19.2	0.0
CP3	RYEGRASS	tba	34.6	82.6	26.4	44	1	45	21	93	41.0	78.6
CP4	RYEGRASS	tba	24.2	33.6	26.4	44	1	45	21	93	30.6	29.6
CP5	RYEGRASS	tba	0	3.6	26.4	18.6	1	90	21	93	6.4	19.2
SHT	RYEGRASS	tba	51.8	0	26.4	88	1	45	21	93	58.2	40.0

SUMMER 2027/28	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	36.2	77.6	26.4	0	3	193	25	200	40.6	70.6
CP2	LUCERNE	tba	19.2	0	26.4	44	3	193	25	200	23.6	37.0
CP3	RYEGRASS	tba	41	78.6	22	11	3	53	21	47	45.0	95.6
CP4	RYEGRASS	tba	30.6	29.6	22	11	3	53	21	47	34.6	46.6
CP5	RYEGRASS	tba	6.4	19.2	22	11	3	53	21	47	10.4	36.2
SHT	RYEGRASS	tba	58.2	40	22	23	3	53	21	47	62.2	69.0

WINTER 2028	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	40.6	70.6	22	23	3	193	25	200	40.6	86.6
CP2	LUCERNE	tba	23.6	37	22	23	3	193	25	200	23.6	53.0
CP3	RYEGRASS	tba	45	95.6	26.4	23	1	45	21	93	51.4	70.6
CP4	RYEGRASS	tba	34.6	46.6	26.4	23	1	45	21	93	41.0	21.6
CP5	RYEGRASS	tba	10.4	36.2	26.4	23	1	45	21	93	16.8	11.2
SHT	RYEGRASS	tba	62.2	69	26.4	18.6	1	45	21	93	68.6	39.6

SUMMER 2028/29	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	40.6	86.6	26.4	0	3	193	25	200	45.0	79.6
CP2	LUCERNE	tba	23.6	53	26.4	0	3	193	25	200	28.0	46.0
CP3	RYEGRASS	tba	51.4	70.6	0	23	3	53	21	47	33.4	99.6
CP4	RYEGRASS	tba	41	21.6	0	23	3	53	21	47	23.0	50.6
CP5	RYEGRASS	tba	16.8	11.2	26.4	23	3	53	21	47	25.2	40.2
SHT	RYEGRASS	tba	68.6	39.6	22	23	3	53	21	47	72.6	68.6

WINTER 2029	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	45	79.6	22	0	3	193	25	200	45.0	72.6
CP2	LUCERNE	tba	28	46	22	0	3	193	25	200	28.0	39.0
CP3	WHEAT	tba	33.4	99.6	48.4	18	1	45	45	100	37.8	62.6
CP4	WHEAT	tba	23	50.6	26.4	39	1	45	45	100	5.4	34.6
CP5	RYEGRASS	tba	25.2	40.2	26.4	18	1	45	21	93	31.6	10.2
SHT	RYEGRASS	tba	72.6	68.6	26.4	39	1	45	21	93	79.0	59.6

SUMMER 2029/30	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	45	72.6	26.4	0	3	193	25	200	49.4	65.6
CP2	LUCERNE	tba	28	39	26.4	0	3	193	25	200	32.4	32.0
CP3	FALLOW	tba	37.8	62.6	0	0	0	0	0	0	37.8	62.6
CP4	FALLOW	tba	5.4	34.6	0	0	0	0	0	0	5.4	34.6
CP5	RYEGRASS	tba	31.6	10.2	22	23	3	53	21	47	35.6	39.2
SHT	RYEGRASS	tba	79	59.6	22	23	3	53	21	47	83.0	88.6

WINTER 2030	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	49.4	65.6	22	0	3	193	25	200	49.4	58.6
CP2	LUCERNE	tba	32.4	32	22	23	3	193	25	200	32.4	48.0
CP3	WHEAT	tba	37.8	62.6	39.6	63.6	1	45	45	100	33.4	71.2
CP4	WHEAT	tba	5.4	34.6	52.8	63.6	1	45	45	100	14.2	43.2
CP5	RYEGRASS	tba	35.6	39.2	22	18.6	1	45	21	93	37.6	9.8
SHT	RYEGRASS	tba	83	88.6	22	18.6	1	45	21	93	85.0	59.2

SUMMER 2030/31	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	RYEGRASS	tba	49.4	58.6	0	23	3	53	21	47	31.4	87.6
CP2	RYEGRASS	tba	32.4	48	0	23	3	53	21	47	14.4	77.0
CP3	LUCERNE	tba	33.4	71.2	37.4	0	3	193	25	200	48.8	64.2
CP4	LUCERNE	tba	14.2	43.2	37.4	0	3	193	25	200	29.6	36.2
CP5	RYEGRASS	tba	37.6	9.8	0	23	1	53	21	47	17.6	38.8
SHT	RYEGRASS	tba	85	59.2	0	23	3	53	21	47	67.0	88.2

WINTER 2031	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	RYEGRASS	tba	31.4	87.6	26.4	23	1	45	21	93	37.8	62.6
CP2	RYEGRASS	tba	14.4	77	26.4	23	1	45	21	93	20.8	52.0
CP3	LUCERNE	tba	48.8	64.2	22	0	3	193	25	200	48.8	57.2
CP4	LUCERNE	tba	29.6	36.2	22	0	3	193	25	200	29.6	29.2
CP5	RYEGRASS	tba	17.6	38.8	26.4	23	1	45	21	93	24.0	13.8
SHT	RYEGRASS	tba	67	88.2	26.4	23	1	45	21	93	73.4	63.2

SUMMER 2031/32	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	RYEGRASS	tba	37.8	62.6	22	0	3	53	21	47	41.8	68.6
CP2	RYEGRASS	tba	20.8	52	22	0	3	53	21	47	24.8	58.0
CP3	LUCERNE	tba	48.8	57.2	22	0	3	193	25	200	48.8	50.2
CP4	LUCERNE	tba	29.6	29.2	22	23	3	193	25	200	29.6	45.2
CP5	RYEGRASS	tba	24	13.8	22	0	3	53	21	47	28.0	19.8
SHT	RYEGRASS	tba	73.4	63.2	22	0	3	53	21	47	77.4	69.2

WINTER 2032	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	WHEAT	tba	41.8	68.6	39.6	46	1	45	45	100	37.4	59.6
CP2	WHEAT	tba	24.8	58	39.6	46	1	45	45	100	20.4	49.0
CP3	LUCERNE	tba	48.8	50.2	22	46	3	193	25	200	48.8	89.2
CP4	LUCERNE	tba	29.6	45.2	22	0	3	193	25	200	29.6	38.2
CP5	WHEAT	tba	28	19.8	26.4	55	1	45	45	100	10.4	19.8
SHT	RYEGRASS	tba	77.4	69.2	26.4	23	1	45	21	93	83.8	44.2

SUMMER 2032/33	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	FALLOW	tba	37.4	59.6	0	0	0	0	0	0	37.4	59.6
CP2	FALLOW	tba	20.4	49	0	0	0	0	0	0	20.4	49.0
CP3	LUCERNE	tba	48.8	89.2	22	0	3	193	25	200	48.8	82.2
CP4	LUCERNE	tba	29.6	38.2	22	0	3	193	25	200	29.6	31.2
CP5	MAIZE	tba	10.4	19.8	44	206	3	53	50	250	7.4	28.8
SHT	RYEGRASS	tba	83.8	44.2	0	0	3	53	21	47	65.8	50.2

WINTER 2033	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	WHEAT	tba	37.4	59.6	39.6	69	1	45	45	100	33.0	73.6
CP2	WHEAT	tba	20.4	49	39.6	46	1	45	45	100	16.0	40.0
CP3	LUCERNE	tba	48.8	82.2	22	0	3	193	25	200	48.8	75.2
CP4	LUCERNE	tba	29.6	31.2	22	0	3	193	25	200	29.6	24.2
CP5	WHEAT	tba	7.4	28.8	39.6	55	1	45	45	100	3.0	28.8
SHT	RYEGRASS	tba	65.8	50.2	26.4	46	1	45	21	93	72.2	48.2

SUMMER 2033/34	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	33	73.6	26.4	21	3	193	25	200	37.4	87.6
CP2	LUCERNE	tba	16	40	26.4	21	3	193	25	200	20.4	54.0
CP3	LUCERNE	tba	48.8	75.2	22	21	3	193	25	200	48.8	89.2
CP4	LUCERNE	tba	29.6	24.2	22	21	3	193	25	200	29.6	38.2
CP5	FALLOW	tba	3	28.8	0	0	0	0	0	0	3.0	28.8
SHT	FALLOW	tba	72.2	48.2	0	0	0	0	0	0	72.2	48.2

WINTER 2034	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	37.4	87.6	22	0	3	193	25	200	37.4	80.6
CP2	LUCERNE	tba	20.4	54	22	0	3	193	25	200	20.4	47.0
CP3	RYEGRASS	tba	48.8	89.2	26.4	44	1	45	21	93	55.2	85.2
CP4	RYEGRASS	tba	29.6	38.2	26.4	44	1	45	21	93	36.0	34.2
CP5	RYEGRASS	tba	3	28.8	26.4	63.6	1	45	21	93	9.4	44.4
SHT	RYEGRASS	tba	72.2	48.2	26.4	63.6	1	45	21	93	78.6	63.8

SUMMER 2034/35	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	37.4	80.6	26.4	0	3	193	25	200	41.8	73.6
CP2	LUCERNE	tba	20.4	47	26.4	0	3	193	25	200	24.8	40.0
CP3	RYEGRASS	tba	55.2	85.2	11	23	3	53	21	47	48.2	114.2
CP4	RYEGRASS	tba	36	34.2	11	23	3	53	21	47	29.0	63.2
CP5	RYEGRASS	tba	9.4	44.4	22	23	3	53	21	47	13.4	73.4
SHT	RYEGRASS	tba	78.6	63.8	11	23	3	53	21	47	71.6	92.8

WINTER 2035	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	41.8	73.6	22	0	3	193	25	200	41.8	66.6
CP2	LUCERNE	tba	24.8	40	22	18.6	3	193	25	200	24.8	51.6
CP3	RYEGRASS	tba	48.2	114.2	26.4	18.6	1	45	21	93	54.6	84.8
CP4	RYEGRASS	tba	29	63.2	26.4	18.6	1	45	21	93	35.4	33.8
CP5	RYEGRASS	tba	13.4	73.4	26.4	42.6	1	45	21	93	19.8	68.0
SHT	RYEGRASS	tba	71.6	92.8	26.4	18.6	1	45	21	93	78.0	63.4

SUMMER 2035/36	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	41.8	66.6	22	22	3	193	25	200	41.8	81.6
CP2	LUCERNE	tba	24.8	51.6	22	0	3	193	25	200	24.8	44.6
CP3	RYEGRASS	tba	54.6	84.8	0	0	3	53	21	47	36.6	90.8
CP4	RYEGRASS	tba	35.4	33.8	22	0	3	53	21	47	39.4	39.8
CP5	RYEGRASS	tba	19.8	68	22	0	3	53	21	47	23.8	74.0
SHT	RYEGRASS	tba	78	63.4	22	0	3	53	21	47	82.0	69.4

WINTER 2036	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	41.8	81.6	22	0	3	193	25	200	41.8	74.6
CP2	LUCERNE	tba	24.8	44.6	22	0	3	193	25	200	24.8	37.6
CP3	WHEAT	tba	36.6	90.8	39.6	44	1	45	45	100	32.2	79.8
CP4	WHEAT	tba	39.4	39.8	26.4	44	1	45	45	100	21.8	28.8
CP5	RYEGRASS	tba	23.8	74	26.4	23	1	45	21	93	30.2	49.0
SHT	RYEGRASS	tba	82	69.4	26.4	23	1	45	21	93	88.4	44.4

SUMMER 2036/37	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	41.8	74.6	22	22	3	193	25	200	41.8	89.6
CP2	LUCERNE	tba	24.8	37.6	22	22	3	193	25	200	24.8	52.6
CP3	FALLOW	tba	32.2	79.8	22	22	3	53	21	47	36.2	107.8
CP4	FALLOW	tba	21.8	28.8	22	23	0	0	0	0	43.8	51.8
CP5	RYEGRASS	tba	30.2	49	22	23	3	53	21	47	34.2	78.0
SHT	RYEGRASS	tba	88.4	44.4	22	23	3	53	21	47	92.4	73.4

WINTER 2037	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	LUCERNE	tba	41.8	89.6	22	0	3	193	25	200	41.8	82.6
CP2	LUCERNE	tba	24.8	52.6	22	0	3	193	25	200	24.8	45.6
CP3	WHEAT	tba	36.2	107.8	52.8	46	1	45	45	100	45.0	98.8
CP4	WHEAT	tba	43.8	51.8	26.4	46	1	45	45	100	26.2	42.8
CP5	RYEGRASS	tba	34.2	78	26.4	18.6	1	45	21	93	40.6	48.6
SHT	RYEGRASS	tba	92.4	73.4	26.4	18.6	1	45	21	93	98.8	44.0

SUMMER 2037/38	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	RYEGRASS	tba	41.8	82.6	22	23	3	53	21	47	45.8	111.6
CP2	RYEGRASS	tba	24.8	45.6	22	23	3	53	21	47	28.8	74.6
CP3	LUCERNE	tba	45	98.8	37.4	0	3	193	25	200	60.4	91.8
CP4	LUCERNE	tba	26.2	42.8	37.4	23	3	193	25	200	41.6	58.8
CP5	RYEGRASS	tba	40.6	48.6	0	23	1	53	21	47	20.6	77.6
SHT	RYEGRASS	tba	98.8	44	0	23	3	53	21	47	8.08	73.0

WINTER 2038	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	RYEGRASS	tba	45.8	111.6	22	0	3	193	25	200	45.8	104.6
CP2	RYEGRASS	tba	28.8	74.6	22	0	3	193	25	200	28.8	67.6
CP3	LUCERNE	tba	60.4	91.8	44	63.6	1	45	45	100	60.4	100.4
CP4	LUCERNE	tba	41.6	58.8	44	63.6	1	45	45	100	41.6	67.4
CP5	RYEGRASS	tba	20.6	77.6	26.4	18.6	1	45	21	93	27.0	48.2
SHT	RYEGRASS	tba	80.8	73	26.4	18.6	1	45	21	93	87.2	43.6

SUMMER 2038/39	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	RYEGRASS	tba	45.8	104.6	0	12.5	22	53	21	47	46.8	123.1
CP2	RYEGRASS	tba	28.8	67.6	0	12.5	22	53	21	47	29.8	86.1
CP3	LUCERNE	tba	60.4	100.4	37.4	0	3	193	25	200	75.8	93.4
CP4	LUCERNE	tba	41.6	67.4	37.4	0	3	193	25	200	57.0	60.4
CP5	RYEGRASS	tba	27	48.2	0	23	22	53	21	47	28.0	77.2
SHT	RYEGRASS	tba	87.2	43.6	0	23	3	53	21	47	69.2	72.6

WINTER 2039	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	RYEGRASS	tba	29.8	86.1	22	0	3	193	25	200	29.8	79.1
CP2	RYEGRASS	tba	75.8	93.4	22	0	3	193	25	200	75.8	86.4
CP3	LUCERNE	tba	57	60.4	44	63.6	1	45	45	100	57.0	69.0
CP4	LUCERNE	tba	28	77.2	44	63.6	1	45	45	100	28.0	85.8
CP5	RYEGRASS	tba	69.2	72.6	26.4	44	1	45	21	93	75.6	68.6
SHT	RYEGRASS	tba	69.2	72.6	26.4	55	1	45	21	93	75.6	79.6

SUMMER 2039/40	CROP (VARIETY)	DATE SOWN	SOIL P AT SOWING (kg/ha)	SOIL N AT SOWING (kg/ha)	P FERTLISER (kg/ha)	N FERTILISER (kg/ha)	P ADDITIONAL (kg/ha)	N ADDITIONAL (kg/ha)	P REMOVAL (kg/ha)	N REMOVAL (kg/ha)	P AFTER CROP (kg/ha)	N AFTER CROP (kg/ha)
CP1	RYEGRASS	tba	29.8	79.1	0	23	22	53	21	47	30.8	108.1
CP2	RYEGRASS	tba	75.8	86.4	0	23	22	53	21	47	76.8	115.4
CP3	LUCERNE	tba	57	69	37.4	0	3	193	25	200	72.4	62.0
CP4	LUCERNE	tba	28	85.8	37.4	0	3	193	25	200	43.4	78.8
CP5	RYEGRASS	tba	75.6	68.6	0	0	22	53	21	47	76.6	74.6
SHT	RYEGRASS	tba	75.6	79.6	26.4	0	3	53	21	47	84.0	85.6

Attachment F: By-Products 2024-2025

					D	regs &	Grits by-	products	monitorii	ng 2024-2	. 5			
Pollutant	Unit of measure	1/07/2024	2/08/2024	3/09/2024	8/10/2024	1/11/2024	2/12/2024	8/01/2025	13/02/2025	7/03/2025	3/04/2025	5/05/2025	2/06/2025	Mean
Arsenic	ppm	< 4	11	6	19	14	< 1	2	< 1	< 1	< 1	< 1	< 1	5
Cadmium	ppm	2	1.4	1.4	2.2	1.6	1.7	1.2	2.2	2.4	1.1	0.9	2.9	1.8
Chromium	ppm	37	25	28	44	26	35	25	51	55	23	20	44	34.4
Copper	ppm	83	39	63	84	54	93	68	130	130	64	57	160	85
Lead	ppm	380	11	250	93	31	51	53	470	350	430	140	230	207
Mercury	ppm	< 0.1	0.10	< 0.05	0.06	0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06
Nickel	ppm	30	32	22	30	20	24	20	36	33	14	13	32	26
Zinc	ppm	450	320	360	580	350	510	360	750	650	320	300	800	479
Sodium	ppm	14000	2600	11000	8300	3600	9900	20000	13000	13000	15000	6000	14000	10867
Moisture	%	37.0	28.8	19.2	23.8	8.5	34.8	26.7	33.6	11.3	30.3	4.9	43.8	25.2
Boron	ppm	30	210	110	220	160	13	29	14	16	11	18	14	70
Conductivity	dS/m	2.900	2.000	7.900	13.000	9.200	0.810	1.600	4.900	4.300	12.00	1.500	1.500	5.1
Molybdenum	ppm	2	1	1	3	2	< 1	1	< 1	< 1	< 1	< 1	< 1	1
рН	рН	10.0	12.7	11.7	10.4	10.0	9.8	11.8	11.7	9.7	12.6	9.9	10.1	10.9
Selenium	ppm	< 8	<2	< 2	< 2	< 2	2	< 2	4	4	< 2	< 2	3	3

					L	ime mu	d by-pro	ducts m	onitorin	g 2024-2	5			
Pollutant	Unit of measure	1/07/2024	2/08/2024	3/09/2024	8/10/2024	1/11/2024	2/11/2024	8/01/2025	13/02/2025	7/03/2025	3/04/2025	5/05/2025	2/06/2025	Mean
Arsenic	ppm	< 4	1	< 1	< 1	< 1	< 1	< 1	1	1	< 1	< 1	< 1	1
Cadmium	ppm	< 0.4	1.0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.4
Chromium	ppm	7	22	7.4	6.6	5.8	4.9	4.5	5.6	5.6	4.4	5.1	5.8	7.1
Copper	ppm	< 1	66	< 0.5	0.7	< 0.5	< 0.5	< 0.5	0.7	0.9	1	< 0.5	0.5	6.1
Lead	ppm	490	330	460	270	310	49	210	480	720	460	250	340	364
Mercury	ppm	< 0.1	< 0.06	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0
Nickel	ppm	< 1	14	0.7	< 0.5	1.2	1.1	1.2	0.8	0.8	0.5	0.6	0.5	2
Zinc	ppm	< 1	310	< 2	8	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	28.1
Sodium	ppm	11000	17000	13000	18000	11000	11000	11000	11000	12000	12000	12000	11000	12500
Moisture	%	13.0	34.1	20.8	12.4	5.2	20.3	9.4	20.7	12.4	15.0	15.0	16.4	16.2
Boron	ppm	20	9	14	11	7	8	9	10	10	8	12	11	11
Conductivity	dS/m	0.940	4.100	1.100	5.100	0.620	0.770	1.800	1.200	0.800	1.500	0.880	1.700	1.7
Molybdenum	ppm	< 2	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1
рН	pН	10.4	10.9	9.8	10.5	10.1	9.9	10.3	11.3	10.7	10.0	9.8	11.2	10.4
Selenium	ppm	< 7	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	2.4

						Fly ash b	y-produ	cts mon	itoring 2	024-25				
Pollutant	Unit of measure	1/07/2024	2/08/2024	3/09/2024	8/10/2024	1/11/2024	2/12/2024	8/01/2025	13/02/2025	7/03/2025	3/04/2025	5/05/2025	2/06/2025	Mean
Arsenic	ppm	8	< 1	21	39	7	35	14	11	15	10	22	12	16
Cadmium	ppm	1	< 0.3	1.8	1.7	1.2	1.4	0.9	0.8	0.8	0.9	1.6	1.4	1.2
Chromium	ppm	38	6.2	28	36	20	36	22	14	19	15	25	20	23.3
Copper	ppm	50	< 0.5	47	60	38	49	42	28	32	33	46	39	38.7
Lead	ppm	14	300	14	13	16	22	31	25	11	11	15	10	40
Mercury	ppm	< 0.1	< 0.05	0.14	0.09	0.09	0.09	0.06	0.11	0.10	0.08	0.15	0.11	0.1
Nickel	ppm	32	0.7	21.0	25	18	19	17	9.9	11	11	18	18	17
Zinc	ppm	330	< 2	380	390	230	210	170	160	180	180	320	250	234
Sodium	ppm	1300	13000	2800	1500	2300	2300	2100	1800	1800	1300	2600	2100	2908
Moisture	%	27.0	20.9	20.9	12.9	13	19.2	9.5	13.6	18.8	17.4	9.5	15.9	16.5
Boron	ppm	160	7	260	250	160	170	130	110	150	150	220	200	164
Conductivity	dS/m	0.580	0.660	15.000	10.000	11.000	8.000	3.800	7.700	9.200	7.200	12.000	13.000	8.2
Molybdenum	ppm	< 2	< 1	2	2	1	2	1	1	2	1	2	1	2
pH	рН	9.7	10.5	12.3	12.1	12.1	12.0	11.4	11.9	12.1	11.7	12.1	12.3	11.7
Selenium	ppm	< 8	< 2	3	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	2.6
Total Organic Carbon	ppm	14000	12000	13000	15000	17000	12000	9500	6800	9200	7400	5800	7000	10725

					Во	iler Sand	by-prod	ucts mo	nitoring	2024-25				
Pollutant	Unit of measure	1/07/2024	2/08/2024	3/09/2024	8/10/2024	1/11/2024	2/12/2024	8/01/2025	13/02/2025	7/03/2025	3/04/2025	5/05/2025	2/06/2025	Mean
Arsenic	ppm	< 4	< 1	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1
Cadmium	ppm	< 0.4	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.3
Chromium	ppm	10	9.3	8.2	5.3	3.9	8.1	9.8	8.1	7.1	2.7	6.5	3.2	6.9
Copper	ppm	5	3.3	4.5	4.0	3.1	4.9	4.4	4.9	3.7	2.5	7.1	11.0	4.9
Lead	ppm	3	< 1	< 1	< 1	< 1	<1	< 1	< 1	1	< 1	< 1	< 1	1
Mercury	ppm	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Nickel	ppm	6	6.0	4.3	2.9	3.0	4.8	5.2	4.4	2.2	1.9	6.8	2.6	4
Zinc	ppm	40	27	32	32	19	38	38	33	22	19	39	20	29.9
Sodium	ppm	370	160	280	340	370	780	340	480	230	130	600	200	357
Moisture	%	6.3	< 1.0	< 1.0	< 1	< 1	5.0	< 1	2.6	< 1	< 1	< 1	< 1.0	1.9
Boron	ppm	10	22	18	20	12	14	14	15	13	13	17	21	16
Conductivity	dS/m	0.160	0.370	0.430	0.860	0.720	0.830	0.330	0.470	0.420	0.510	0.180	0.660	0.5
Molybdenum	ppm	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1
рН	pН	10.3	10.8	10.7	10.2	10.0	10.1	10.4	10.1	10.4	10.7	10.4	10.7	10.4
Selenium	ppm	< 5	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	2
								•	•		•			

Attachment G: Sludge 2024-2025

Monitoring Point - Sludge

Sampled from SBR

Campica nom obit	Critical	Unit of					Sludge	e (treated) n	nonitoring 2	024-25				
Pollutant	Range	measure	1/07/2024	2/08/2024	3/09/2024	8/10/2024	1/11/2024	2/12/2024	8/01/2025	13/02/2025	7/03/2025	3/04/2025	5/05/2025	4/06/2025
Manganese	0.2 1	mg/L	0.155	0.120	0.110	0.420	0.110	0.130	0.160	0.120	0.100	0.110	0.180	0.048
Total suspended solids	<45 ²	mg/L	341	2000	2200	1900	380	1600	870	13	77	18	160	25
BOD	<15 ¹	mg/L	411	300	470	370	62	300	59	5	10	<5	17	6
Sodium Adsorption Ratio	<4.5 ¹	SAR	4	2.7	3.2	3.3	3.3	4.0	3.3	2.9	2.5	3	3.8	4.2
Nitrogen (total)	<20 ²	mg/L	131	130	130	82	18	92	49	6.2	8.1	5	16	3.6
Phosphorus (total)	<0.05 1	mg/L	11.3	15	20	14	4.7	13	8.5	1.5	1.4	0.99	3.3	0.90
Total dissolved solids	<225 ¹	mg/L	181	210	190	190	150	260	210	170	150	160	220	210
pH	6.0-8.5 ¹	pН	6.7	6.5	6.5	6.7	6.3	6.8	6.8	6.8	7.0	6.8	6.7	6.9
Conductivity	<350 ¹	uS/cm	281	350	280	330	270	440	380	330	260	250	410	370
Chloride	175	mg/L	19.9	17	24	26	24	55	35	38	25	28	32	32
Oil & Grease	<5 ²	mg/L	24	23	24	10	6	8	8	<5	<5	<5	<5	<5
Sodium - dissolved	115	mg/L	44.0	42.0	41	45	36	54	45	36	31	30	53	54

^{1.} ANZG (2018) Australian & New Zealand Guidelines for Fresh & Marine Water Quality.

^{2.} Visy P & P (2016) NSW EPA Licence 10232. Chatswood, NSW.